Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4WilsonAbrasionModel.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * *
21 // * Parts of this code which have been developed by QinetiQ Ltd *
22 // * under contract to the European Space Agency (ESA) are the *
23 // * intellectual property of ESA. Rights to use, copy, modify and *
24 // * redistribute this software for general public use are granted *
25 // * in compliance with any licensing, distribution and development *
26 // * policy adopted by the Geant4 Collaboration. This code has been *
27 // * written by QinetiQ Ltd for the European Space Agency, under ESA *
28 // * contract 17191/03/NL/LvH (Aurora Programme). *
29 // * *
30 // * By using, copying, modifying or distributing the software (or *
31 // * any work based on the software) you agree to acknowledge its *
32 // * use in resulting scientific publications, and indicate your *
33 // * acceptance of all terms of the Geant4 Software license. *
34 // ********************************************************************
35 //
36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 //
38 // MODULE: G4WilsonAbrasionModel.cc
39 //
40 // Version: 1.0
41 // Date: 08/12/2009
42 // Author: P R Truscott
43 // Organisation: QinetiQ Ltd, UK
44 // Customer: ESA/ESTEC, NOORDWIJK
45 // Contract: 17191/03/NL/LvH
46 //
47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 //
49 // CHANGE HISTORY
50 // --------------
51 //
52 // 6 October 2003, P R Truscott, QinetiQ Ltd, UK
53 // Created.
54 //
55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56 // Beta release
57 //
58 // 18 January 2005, M H Mendenhall, Vanderbilt University, US
59 // Pointers to theAbrasionGeometry and products generated by the deexcitation
60 // handler deleted to prevent memory leaks. Also particle change of projectile
61 // fragment previously not properly defined.
62 //
63 // 08 December 2009, P R Truscott, QinetiQ Ltd, Ltd
64 // ver 1.0
65 // There was originally a possibility of the minimum impact parameter AFTER
66 // considering Couloumb repulsion, rm, being too large. Now if:
67 // rm >= fradius * (rP + rT)
68 // where fradius is currently 0.99, then it is assumed the primary track is
69 // unchanged. Additional conditions to escape from while-loop over impact
70 // parameter: if the loop counter evtcnt reaches 1000, the primary track is
71 // continued.
72 // Additional clauses have been included in
73 // G4WilsonAbrasionModel::GetNucleonInducedExcitation
74 // Previously it was possible to get sqrt of negative number as Wilson
75 // algorithm not properly defined if either:
76 // rT > rP && rsq < rTsq - rPsq) or (rP > rT && rsq < rPsq - rTsq)
77 //
78 // 12 June 2012, A. Ribon, CERN, Switzerland
79 // Fixing trivial warning errors of shadowed variables.
80 //
81 // 4 August 2015, A. Ribon, CERN, Switzerland
82 // Replacing std::exp and std::pow with the faster versions G4Exp and G4Pow.
83 //
84 // 7 August 2015, A. Ribon, CERN, Switzerland
85 // Checking of 'while' loops.
86 //
87 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 
90 #include "G4WilsonAbrasionModel.hh"
91 #include "G4WilsonRadius.hh"
93 #include "G4WilsonAblationModel.hh"
94 
95 #include "G4PhysicalConstants.hh"
96 #include "G4SystemOfUnits.hh"
97 #include "G4ExcitationHandler.hh"
98 #include "G4Evaporation.hh"
99 #include "G4ParticleDefinition.hh"
100 #include "G4DynamicParticle.hh"
101 #include "Randomize.hh"
102 #include "G4Fragment.hh"
104 #include "G4LorentzVector.hh"
105 #include "G4ParticleMomentum.hh"
106 #include "G4Poisson.hh"
107 #include "G4ParticleTable.hh"
108 #include "G4IonTable.hh"
109 #include "globals.hh"
110 
111 #include "G4Exp.hh"
112 #include "G4Pow.hh"
113 
114 
116  :G4HadronicInteraction("G4WilsonAbrasion")
117 {
118  // Send message to stdout to advise that the G4Abrasion model is being used.
120 
121  // Set the default verbose level to 0 - no output.
122  verboseLevel = 0;
123  useAblation = useAblation1;
124  theAblation = nullptr;
125 
126  // No de-excitation handler has been supplied - define the default handler.
127 
129  if (useAblation)
130  {
134  }
135 
136  // Set the minimum and maximum range for the model (despite nomanclature,
137  // this is in energy per nucleon number).
138 
139  SetMinEnergy(70.0*MeV);
140  SetMaxEnergy(10.1*GeV);
141  isBlocked = false;
142 
143  // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
144  // momentum over which the secondary nucleon momentum is sampled.
145 
146  r0sq = 0.0;
147  npK = 5.0;
148  B = 10.0 * MeV;
149  third = 1.0 / 3.0;
150  fradius = 0.99;
151  conserveEnergy = false;
152  conserveMomentum = true;
153 }
154 
155 void G4WilsonAbrasionModel::ModelDescription(std::ostream& outFile) const
156 {
157  outFile << "G4WilsonAbrasionModel is a macroscopic treatment of\n"
158  << "nucleus-nucleus collisions using simple geometric arguments.\n"
159  << "The smaller projectile nucleus gouges out a part of the larger\n"
160  << "target nucleus, leaving a residual nucleus and a fireball\n"
161  << "region where the projectile and target intersect. The fireball"
162  << "is then treated as a highly excited nuclear fragment. This\n"
163  << "model is based on the NUCFRG2 model and is valid for all\n"
164  << "projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
165 }
166 
168 {
169 // Send message to stdout to advise that the G4Abrasion model is being used.
170 
172 
173 // Set the default verbose level to 0 - no output.
174 
175  verboseLevel = 0;
176 
177  theAblation = nullptr; //A.R. 26-Jul-2012 Coverity fix.
178  useAblation = false; //A.R. 14-Aug-2012 Coverity fix.
179 
180 //
181 // The user is able to provide the excitation handler as well as an argument
182 // which is provided in this instantiation is used to determine
183 // whether the spectators of the interaction are free following the abrasion.
184 //
185  theExcitationHandler = aExcitationHandler;
186 //
187 //
188 // Set the minimum and maximum range for the model (despite nomanclature, this
189 // is in energy per nucleon number).
190 //
191  SetMinEnergy(70.0*MeV);
192  SetMaxEnergy(10.1*GeV);
193  isBlocked = false;
194 //
195 //
196 // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
197 // momentum over which the secondary nucleon momentum is sampled.
198 //
199  r0sq = 0.0; //A.R. 14-Aug-2012 Coverity fix.
200  npK = 5.0;
201  B = 10.0 * MeV;
202  third = 1.0 / 3.0;
203  fradius = 0.99;
204  conserveEnergy = false;
205  conserveMomentum = true;
206 }
208 //
210 {
211  delete theExcitationHandler;
212 }
214 //
216  const G4HadProjectile &theTrack, G4Nucleus &theTarget)
217 {
218 //
219 //
220 // The secondaries will be returned in G4HadFinalState &theParticleChange -
221 // initialise this. The original track will always be discontinued and
222 // secondaries followed.
223 //
226 //
227 //
228 // Get relevant information about the projectile and target (A, Z, energy/nuc,
229 // momentum, etc).
230 //
231  const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
232  const G4double AP = definitionP->GetBaryonNumber();
233  const G4double ZP = definitionP->GetPDGCharge();
234  G4LorentzVector pP = theTrack.Get4Momentum();
235  G4double E = theTrack.GetKineticEnergy()/AP;
236  G4double AT = theTarget.GetA_asInt();
237  G4double ZT = theTarget.GetZ_asInt();
238  G4double TotalEPre = theTrack.GetTotalEnergy() +
239  theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
240  G4double TotalEPost = 0.0;
241 //
242 //
243 // Determine the radii of the projectile and target nuclei.
244 //
245  G4WilsonRadius aR;
246  G4double rP = aR.GetWilsonRadius(AP);
247  G4double rT = aR.GetWilsonRadius(AT);
248  G4double rPsq = rP * rP;
249  G4double rTsq = rT * rT;
250  if (verboseLevel >= 2)
251  {
252  G4cout <<"########################################"
253  <<"########################################"
254  <<G4endl;
255  G4cout.precision(6);
256  G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
257  G4cout <<"Initial projectile A=" <<AP
258  <<", Z=" <<ZP
259  <<", radius = " <<rP/fermi <<" fm"
260  <<G4endl;
261  G4cout <<"Initial target A=" <<AT
262  <<", Z=" <<ZT
263  <<", radius = " <<rT/fermi <<" fm"
264  <<G4endl;
265  G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
266  }
267 //
268 //
269 // The following variables are used to determine the impact parameter in the
270 // near-field (i.e. taking into consideration the electrostatic repulsion).
271 //
272  G4double rm = ZP * ZT * elm_coupling / (E * AP);
273  G4double r = 0.0;
274  G4double rsq = 0.0;
275 //
276 //
277 // Initialise some of the variables which wll be used to calculate the chord-
278 // length for nucleons in the projectile and target, and hence calculate the
279 // number of abraded nucleons and the excitation energy.
280 //
281  G4NuclearAbrasionGeometry *theAbrasionGeometry = nullptr;
282  G4double CT = 0.0;
283  G4double F = 0.0;
284  G4int Dabr = 0;
285 //
286 //
287 // The following loop is performed until the number of nucleons which are
288 // abraded by the process is >1, i.e. an interaction MUST occur.
289 //
290  G4bool skipInteraction = false; // It will be set true if the two nuclei fail to collide
291  const G4int maxNumberOfLoops = 1000;
292  G4int loopCounter = -1;
293  while (Dabr == 0 && ++loopCounter < maxNumberOfLoops) /* Loop checking, 07.08.2015, A.Ribon */
294  {
295 //
296 //
297 // Sample the impact parameter. For the moment, this class takes account of
298 // electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
299 // does not make any correction for the effects of nuclear-nuclear repulsion.
300 //
301  G4double rPT = rP + rT;
302  G4double rPTsq = rPT * rPT;
303 //
304 //
305 // This is a "catch" to make sure we don't go into an infinite loop because the
306 // energy is too low to overcome nuclear repulsion. PRT 20091023. If the
307 // value of rm < fradius * rPT then we're unlikely to sample a small enough
308 // impact parameter (energy of incident particle is too low).
309 //
310  if (rm >= fradius * rPT) {
311  skipInteraction = true;
312  }
313 //
314 //
315 // Now sample impact parameter until the criterion is met that projectile
316 // and target overlap, but repulsion is taken into consideration.
317 //
318  G4int evtcnt = 0;
319  r = 1.1 * rPT;
320  while (r > rPT && ++evtcnt < 1000) /* Loop checking, 07.08.2015, A.Ribon */
321  {
322  G4double bsq = rPTsq * G4UniformRand();
323  r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
324  }
325 //
326 //
327 // We've tried to sample this 1000 times, but failed.
328 //
329  if (evtcnt >= 1000) {
330  skipInteraction = true;
331  }
332 
333  rsq = r * r;
334 //
335 //
336 // Now determine the chord-length through the target nucleus.
337 //
338  if (rT > rP)
339  {
340  G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
341  if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
342  else CT = 2.0 * std::sqrt(rTsq - rsq);
343  }
344  else
345  {
346  G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
347  if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
348  else CT = 2.0 * rT;
349  }
350 //
351 //
352 // Determine the number of abraded nucleons. Note that the mean number of
353 // abraded nucleons is used to sample the Poisson distribution. The Poisson
354 // distribution is sampled only ten times with the current impact parameter,
355 // and if it fails after this to find a case for which the number of abraded
356 // nucleons >1, the impact parameter is re-sampled.
357 //
358  delete theAbrasionGeometry;
359  theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
360  F = theAbrasionGeometry->F();
361  G4double lambda = 16.6*fermi / G4Pow::GetInstance()->powA(E/MeV,0.26);
362  G4double Mabr = F * AP * (1.0 - G4Exp(-CT/lambda));
363  G4long n = 0;
364  for (G4int i = 0; i<10; ++i)
365  {
366  n = G4Poisson(Mabr);
367  if (n > 0)
368  {
369  if (n>AP) Dabr = (G4int) AP;
370  else Dabr = (G4int) n;
371  break;
372  }
373  }
374  } // End of while loop
375 
376  if ( loopCounter >= maxNumberOfLoops || skipInteraction ) {
377  // Assume nuclei do not collide and return unchanged primary.
381  if (verboseLevel >= 2) {
382  G4cout <<"Particle energy too low to overcome repulsion." <<G4endl;
383  G4cout <<"Event rejected and original track maintained" <<G4endl;
384  G4cout <<"########################################"
385  <<"########################################"
386  <<G4endl;
387  }
388  delete theAbrasionGeometry;
389  return &theParticleChange;
390  }
391 
392  if (verboseLevel >= 2)
393  {
394  G4cout <<G4endl;
395  G4cout <<"Impact parameter = " <<r/fermi <<" fm" <<G4endl;
396  G4cout <<"# Abraded nucleons = " <<Dabr <<G4endl;
397  }
398 //
399 //
400 // The number of abraded nucleons must be no greater than the number of
401 // nucleons in either the projectile or the target. If AP - Dabr < 2 or
402 // AT - Dabr < 2 then either we have only a nucleon left behind in the
403 // projectile/target or we've tried to abrade too many nucleons - and Dabr
404 // should be limited.
405 //
406  if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
407  if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
408 //
409 //
410 // Determine the abraded secondary nucleons from the projectile. *fragmentP
411 // is a pointer to the prefragment from the projectile and nSecP is the number
412 // of nucleons in theParticleChange which have been abraded. The total energy
413 // from these is determined.
414 //
415  G4ThreeVector boost = pP.findBoostToCM();
416  G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
418  G4int i = 0;
419  for (i=0; i<nSecP; ++i)
420  {
421  TotalEPost += theParticleChange.GetSecondary(i)->
422  GetParticle()->GetTotalEnergy();
423  }
424 //
425 //
426 // Determine the number of spectators in the interaction region for the
427 // projectile.
428 //
429  G4int DspcP = (G4int) (AP*F) - Dabr;
430  if (DspcP <= 0) DspcP = 0;
431  else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
432 //
433 //
434 // Determine excitation energy associated with excess surface area of the
435 // projectile (EsP) and the excitation due to scattering of nucleons which are
436 // retained within the projectile (ExP). Add the total energy from the excited
437 // nucleus to the total energy of the secondaries.
438 //
439  G4bool excitationAbsorbedByProjectile = false;
440  if (fragmentP != nullptr)
441  {
442  G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
443  G4double ExP = 0.0;
444  if (Dabr < AT)
445  excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
446  if (excitationAbsorbedByProjectile)
447  ExP = GetNucleonInducedExcitation(rP, rT, r);
448  G4double xP = EsP + ExP;
449  if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
450  G4LorentzVector lorentzVector = fragmentP->GetMomentum();
451  lorentzVector.setE(lorentzVector.e()+xP);
452  fragmentP->SetMomentum(lorentzVector);
453  TotalEPost += lorentzVector.e();
454  }
455  G4double EMassP = TotalEPost;
456 //
457 //
458 // Determine the abraded secondary nucleons from the target. Note that it's
459 // assumed that the same number of nucleons are abraded from the target as for
460 // the projectile, and obviously no boost is applied to the products. *fragmentT
461 // is a pointer to the prefragment from the target and nSec is the total number
462 // of nucleons in theParticleChange which have been abraded. The total energy
463 // from these is determined.
464 //
465  G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
467  for (i=nSecP; i<nSec; ++i)
468  {
469  TotalEPost += theParticleChange.GetSecondary(i)->
470  GetParticle()->GetTotalEnergy();
471  }
472 //
473 //
474 // Determine the number of spectators in the interaction region for the
475 // target.
476 //
477  G4int DspcT = (G4int) (AT*F) - Dabr;
478  if (DspcT <= 0) DspcT = 0;
479  else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
480 //
481 //
482 // Determine excitation energy associated with excess surface area of the
483 // target (EsT) and the excitation due to scattering of nucleons which are
484 // retained within the target (ExT). Add the total energy from the excited
485 // nucleus to the total energy of the secondaries.
486 //
487  if (fragmentT != nullptr)
488  {
489  G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
490  G4double ExT = 0.0;
491  if (!excitationAbsorbedByProjectile)
492  ExT = GetNucleonInducedExcitation(rT, rP, r);
493  G4double xT = EsT + ExT;
494  if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
495  G4LorentzVector lorentzVector = fragmentT->GetMomentum();
496  lorentzVector.setE(lorentzVector.e()+xT);
497  fragmentT->SetMomentum(lorentzVector);
498  TotalEPost += lorentzVector.e();
499  }
500 //
501 //
502 // Now determine the difference between the pre and post interaction
503 // energy - this will be used to determine the Lorentz boost if conservation
504 // of energy is to be imposed/attempted.
505 //
506  G4double deltaE = TotalEPre - TotalEPost;
507  if (deltaE > 0.0 && conserveEnergy)
508  {
509  G4double beta = std::sqrt(1.0 - EMassP*EMassP/G4Pow::GetInstance()->powN(deltaE+EMassP,2));
510  boost = boost / boost.mag() * beta;
511  }
512 //
513 //
514 // Now boost the secondaries from the projectile.
515 //
516  G4ThreeVector pBalance = pP.vect();
517  for (i=0; i<nSecP; ++i)
518  {
520  GetParticle();
521  G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
522  lorentzVector.boost(-boost);
523  dynamicP->Set4Momentum(lorentzVector);
524  pBalance -= lorentzVector.vect();
525  }
526 //
527 //
528 // Set the boost for the projectile prefragment. This is now based on the
529 // conservation of momentum. However, if the user selected momentum of the
530 // prefragment is not to be conserved this simply boosted to the velocity of the
531 // original projectile times the ratio of the unexcited to the excited mass
532 // of the prefragment (the excitation increases the effective mass of the
533 // prefragment, and therefore modifying the boost is an attempt to prevent
534 // the momentum of the prefragment being excessive).
535 //
536  if (fragmentP != nullptr)
537  {
538  G4LorentzVector lorentzVector = fragmentP->GetMomentum();
539  G4double fragmentM = lorentzVector.m();
540  if (conserveMomentum)
541  fragmentP->SetMomentum
542  (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+fragmentM*fragmentM+1.0*eV*eV)));
543  else
544  {
545  G4double fragmentGroundStateM = fragmentP->GetGroundStateMass();
546  fragmentP->SetMomentum(lorentzVector.boost(-boost * fragmentGroundStateM/fragmentM));
547  }
548  }
549 //
550 //
551 // Output information to user if verbose information requested.
552 //
553  if (verboseLevel >= 2)
554  {
555  G4cout <<G4endl;
556  G4cout <<"-----------------------------------" <<G4endl;
557  G4cout <<"Secondary nucleons from projectile:" <<G4endl;
558  G4cout <<"-----------------------------------" <<G4endl;
559  G4cout.precision(7);
560  for (i=0; i<nSecP; ++i)
561  {
562  G4cout <<"Particle # " <<i <<G4endl;
565  G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
566  <<" : " <<dyn->Get4Momentum()
567  <<G4endl;
568  }
569  G4cout <<"---------------------------" <<G4endl;
570  G4cout <<"The projectile prefragment:" <<G4endl;
571  G4cout <<"---------------------------" <<G4endl;
572  if (fragmentP != nullptr)
573  G4cout <<*fragmentP <<G4endl;
574  else
575  G4cout <<"(No residual prefragment)" <<G4endl;
576  G4cout <<G4endl;
577  G4cout <<"-------------------------------" <<G4endl;
578  G4cout <<"Secondary nucleons from target:" <<G4endl;
579  G4cout <<"-------------------------------" <<G4endl;
580  G4cout.precision(7);
581  for (i=nSecP; i<nSec; ++i)
582  {
583  G4cout <<"Particle # " <<i <<G4endl;
586  G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
587  <<" : " <<dyn->Get4Momentum()
588  <<G4endl;
589  }
590  G4cout <<"-----------------------" <<G4endl;
591  G4cout <<"The target prefragment:" <<G4endl;
592  G4cout <<"-----------------------" <<G4endl;
593  if (fragmentT != nullptr)
594  G4cout <<*fragmentT <<G4endl;
595  else
596  G4cout <<"(No residual prefragment)" <<G4endl;
597  }
598 //
599 //
600 // Now we can decay the nuclear fragments if present. The secondaries are
601 // collected and boosted as well. This is performed first for the projectile...
602 //
603  if (fragmentP !=nullptr)
604  {
605  G4ReactionProductVector *products = nullptr;
606  // if (fragmentP->GetZ_asInt() != fragmentP->GetA_asInt())
607  products = theExcitationHandler->BreakItUp(*fragmentP);
608  // else
609  // products = theExcitationHandlerx->BreakItUp(*fragmentP);
610  delete fragmentP;
611  fragmentP = nullptr;
612 
613  G4ReactionProductVector::iterator iter;
614  for (iter = products->begin(); iter != products->end(); ++iter)
615  {
616  G4DynamicParticle *secondary =
617  new G4DynamicParticle((*iter)->GetDefinition(),
618  (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
619  theParticleChange.AddSecondary (secondary); // Added MHM 20050118
620  G4String particleName = (*iter)->GetDefinition()->GetParticleName();
621  delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
622  if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
623  {
624  G4cout <<"------------------------" <<G4endl;
625  G4cout <<"The projectile fragment:" <<G4endl;
626  G4cout <<"------------------------" <<G4endl;
627  G4cout <<" fragmentP = " <<particleName
628  <<" Energy = " <<secondary->GetKineticEnergy()
629  <<G4endl;
630  }
631  }
632  delete products; // Added MHM 20050118
633  }
634 //
635 //
636 // Now decay the target nucleus - no boost is applied since in this
637 // approximation it is assumed that there is negligible momentum transfer from
638 // the projectile.
639 //
640  if (fragmentT != nullptr)
641  {
642  G4ReactionProductVector *products = nullptr;
643  // if (fragmentT->GetZ_asInt() != fragmentT->GetA_asInt())
644  products = theExcitationHandler->BreakItUp(*fragmentT);
645  // else
646  // products = theExcitationHandlerx->BreakItUp(*fragmentT);
647  // delete fragmentT;
648  fragmentT = nullptr;
649 
650  G4ReactionProductVector::iterator iter;
651  for (iter = products->begin(); iter != products->end(); ++iter)
652  {
653  G4DynamicParticle *secondary =
654  new G4DynamicParticle((*iter)->GetDefinition(),
655  (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
656  theParticleChange.AddSecondary (secondary);
657  G4String particleName = (*iter)->GetDefinition()->GetParticleName();
658  delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
659  if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
660  {
661  G4cout <<"--------------------" <<G4endl;
662  G4cout <<"The target fragment:" <<G4endl;
663  G4cout <<"--------------------" <<G4endl;
664  G4cout <<" fragmentT = " <<particleName
665  <<" Energy = " <<secondary->GetKineticEnergy()
666  <<G4endl;
667  }
668  }
669  delete products; // Added MHM 20050118
670  }
671 
672  if (verboseLevel >= 2)
673  G4cout <<"########################################"
674  <<"########################################"
675  <<G4endl;
676 
677  delete theAbrasionGeometry;
678  return &theParticleChange;
679 }
681 //
683  G4double Z, G4double r)
684 {
685 //
686 //
687 // Initialise variables. tau is the Fermi radius of the nucleus. The variables
688 // p..., C... and gamma are used to help sample the secondary nucleon
689 // spectrum.
690 //
691 
692  G4double pK = hbarc * G4Pow::GetInstance()->A13(9.0 * pi / 4.0 * A) / (1.29 * r);
693  if (A <= 24.0) pK *= -0.229*G4Pow::GetInstance()->A13(A) + 1.62;
694  G4double pKsq = pK * pK;
695  G4double p1sq = 2.0/5.0 * pKsq;
696  G4double p2sq = 6.0/5.0 * pKsq;
697  G4double p3sq = 500.0 * 500.0;
698  G4double C1 = 1.0;
699  G4double C2 = 0.03;
700  G4double C3 = 0.0002;
701  G4double gamma = 90.0 * MeV;
702  G4double maxn = C1 + C2 + C3;
703 //
704 //
705 // initialise the number of secondary nucleons abraded to zero, and initially set
706 // the type of nucleon abraded to proton ... just for now.
707 //
708  G4double Aabr = 0.0;
709  G4double Zabr = 0.0;
711  G4DynamicParticle *dynamicNucleon = nullptr;
712  G4ParticleMomentum pabr(0.0, 0.0, 0.0);
713 //
714 //
715 // Now go through each abraded nucleon and sample type, spectrum and angle.
716 //
717  G4bool isForLoopExitAnticipated = false;
718  for (G4int i=0; i<Dabr; ++i)
719  {
720 //
721 //
722 // Sample the nucleon momentum distribution by simple rejection techniques. We
723 // reject values of p == 0.0 since this causes bad behaviour in the sinh term.
724 //
725  G4double p = 0.0;
726  G4bool found = false;
727  const G4int maxNumberOfLoops = 100000;
728  G4int loopCounter = -1;
729  while (!found && ++loopCounter < maxNumberOfLoops) /* Loop checking, 07.08.2015, A.Ribon */
730  {
731  while (p <= 0.0) p = npK * pK * G4UniformRand(); /* Loop checking, 07.08.2015, A.Ribon */
732  G4double psq = p * p;
733  found = maxn * G4UniformRand() < C1*G4Exp(-psq/p1sq/2.0) +
734  C2*G4Exp(-psq/p2sq/2.0) + C3*G4Exp(-psq/p3sq/2.0) + p/gamma/(0.5*(G4Exp(p/gamma)-G4Exp(-p/gamma)));
735  }
736  if ( loopCounter >= maxNumberOfLoops )
737  {
738  isForLoopExitAnticipated = true;
739  break;
740  }
741 //
742 //
743 // Determine the type of particle abraded. Can only be proton or neutron,
744 // and the probability is determine to be proportional to the ratio as found
745 // in the nucleus at each stage.
746 //
747  G4double prob = (Z-Zabr)/(A-Aabr);
748  if (G4UniformRand()<prob)
749  {
750  Zabr++;
751  typeNucleon = G4Proton::ProtonDefinition();
752  }
753  else
754  typeNucleon = G4Neutron::NeutronDefinition();
755  Aabr++;
756 //
757 //
758 // The angular distribution of the secondary nucleons is approximated to an
759 // isotropic distribution in the rest frame of the nucleus (this will be Lorentz
760 // boosted later.
761 //
762  G4double costheta = 2.*G4UniformRand()-1.0;
763  G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
764  G4double phi = 2.0*pi*G4UniformRand()*rad;
765  G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
766  G4double nucleonMass = typeNucleon->GetPDGMass();
767  G4double E = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
768  dynamicNucleon = new G4DynamicParticle(typeNucleon,direction,E);
769  theParticleChange.AddSecondary (dynamicNucleon);
770  pabr += p*direction;
771  }
772 //
773 //
774 // Next determine the details of the nuclear prefragment .. that is if there
775 // is one or more protons in the residue. (Note that the 1 eV in the total
776 // energy is a safety factor to avoid any possibility of negative rest mass
777 // energy.)
778 //
779  G4Fragment *fragment = nullptr;
780  if ( ! isForLoopExitAnticipated && Z-Zabr>=1.0 )
781  {
783  GetIonMass(G4lrint(Z-Zabr),G4lrint(A-Aabr));
784  G4double E = std::sqrt(pabr.mag2() + ionMass*ionMass);
785  G4LorentzVector lorentzVector = G4LorentzVector(-pabr, E + 1.0*eV);
786  fragment =
787  new G4Fragment((G4int) (A-Aabr), (G4int) (Z-Zabr), lorentzVector);
788  }
789 
790  return fragment;
791 }
793 //
796 {
797 //
798 //
799 // Initialise variables.
800 //
801  G4double Cl = 0.0;
802  G4double rPsq = rP * rP;
803  G4double rTsq = rT * rT;
804  G4double rsq = r * r;
805 //
806 //
807 // Depending upon the impact parameter, a different form of the chord length is
808 // is used.
809 //
810  if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
811  else Cl = 2.0*rP;
812 //
813 //
814 // The next lines have been changed to include a "catch" to make sure if the
815 // projectile and target are too close, Ct is set to twice rP or twice rT.
816 // Otherwise the standard Wilson algorithm should work fine.
817 // PRT 20091023.
818 //
819  G4double Ct = 0.0;
820  if (rT > rP && rsq < rTsq - rPsq) Ct = 2.0 * rP;
821  else if (rP > rT && rsq < rPsq - rTsq) Ct = 2.0 * rT;
822  else {
823  G4double bP = (rPsq+rsq-rTsq)/2.0/r;
824  G4double x = rPsq - bP*bP;
825  if (x < 0.0) {
826  G4cerr <<"########################################"
827  <<"########################################"
828  <<G4endl;
829  G4cerr <<"ERROR IN G4WilsonAbrasionModel::GetNucleonInducedExcitation"
830  <<G4endl;
831  G4cerr <<"rPsq - bP*bP < 0.0 and cannot be square-rooted" <<G4endl;
832  G4cerr <<"Set to zero instead" <<G4endl;
833  G4cerr <<"########################################"
834  <<"########################################"
835  <<G4endl;
836  }
837  Ct = 2.0*std::sqrt(x);
838  }
839 
840  G4double Ex = 13.0 * Cl / fermi;
841  if (Ct > 1.5*fermi)
842  Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
843 
844  return Ex;
845 }
847 //
849 {
850  if (useAblation != useAblation1)
851  {
852  useAblation = useAblation1;
853  if (useAblation)
854  {
858  }
859  else
860  {
861  delete theExcitationHandler;
862  theAblation = nullptr;
864  }
865  }
866  return;
867 }
869 //
871 {
872  G4cout <<G4endl;
873  G4cout <<" *****************************************************************"
874  <<G4endl;
875  G4cout <<" Nuclear abrasion model for nuclear-nuclear interactions activated"
876  <<G4endl;
877  G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
878  <<G4endl;
879  G4cout <<" *****************************************************************"
880  <<G4endl;
881  G4cout << G4endl;
882 
883  return;
884 }
886 //
Float_t x
Definition: compare.C:6
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:300
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
G4double A13(G4double A) const
Definition: G4Pow.cc:138
static G4ParticleTable * GetParticleTable()
static constexpr double MeV
Definition: G4SIunits.hh:214
G4double GetEnergyDeposit()
Definition: G4Nucleus.hh:184
G4ExcitationHandler * theExcitationHandler
void SetMomentumChange(const G4ThreeVector &aV)
const double C1
G4HadSecondary * GetSecondary(size_t i)
#define G4endl
Definition: G4ios.hh:61
const char * p
Definition: xmltok.h:285
static constexpr double hbarc
Hep3Vector findBoostToCM() const
virtual void ModelDescription(std::ostream &) const
G4double GetNucleonInducedExcitation(G4double, G4double, G4double)
const G4String & GetParticleName() const
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4IonTable * GetIonTable() const
G4double GetPDGCharge() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:281
Double_t beta
#define C3
G4double GetTotalEnergy() const
G4double GetPDGMass() const
void SetEvaporation(G4VEvaporation *ptr, G4bool isLocal=false)
Float_t Z
void SetEnergyChange(G4double anEnergy)
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
static constexpr double fermi
Definition: G4SIunits.hh:103
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
G4ParticleDefinition * GetDefinition() const
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:88
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:242
long G4long
Definition: G4Types.hh:80
static constexpr double elm_coupling
#define G4UniformRand()
Definition: Randomize.hh:53
G4ErrorTarget * theTarget
Definition: errprop.cc:59
void Set4Momentum(const G4LorentzVector &momentum)
G4LorentzVector Get4Momentum() const
double A(double temperature)
G4Fragment * GetAbradedNucleons(G4int, G4double, G4double, G4double)
void SetMomentum(const G4LorentzVector &value)
Definition: G4Fragment.hh:305
static constexpr double eV
Definition: G4SIunits.hh:215
double mag2() const
static constexpr double rad
Definition: G4SIunits.hh:149
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4GLOB_DLL std::ostream G4cerr
const G4LorentzVector & Get4Momentum() const
G4int GetNumberOfSecondaries() const
Hep3Vector unit() const
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
double mag() const
int G4lrint(double ad)
Definition: templates.hh:151
int G4int
Definition: G4Types.hh:78
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4WilsonAblationModel * theAblation
G4double GetWilsonRadius(G4double A)
G4DynamicParticle * GetParticle()
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &, G4Nucleus &)
static G4Neutron * NeutronDefinition()
Definition: G4Neutron.cc:99
G4double GetKineticEnergy() const
G4GLOB_DLL std::ostream G4cout
G4WilsonAbrasionModel(G4bool useAblation1=false)
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:51
Hep3Vector vect() const
Char_t n[5]
static constexpr double pi
Definition: G4SIunits.hh:75
CLHEP::HepLorentzVector G4LorentzVector
void DumpInfo(G4int mode=0) const
static constexpr double GeV
Definition: G4SIunits.hh:217
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
HepLorentzVector & boost(double, double, double)
void SetStatusChange(G4HadFinalStateStatus aS)
const double C2
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:254