Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4NuclearAbrasionGeometry.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * *
21 // * Parts of this code which have been developed by QinetiQ Ltd *
22 // * under contract to the European Space Agency (ESA) are the *
23 // * intellectual property of ESA. Rights to use, copy, modify and *
24 // * redistribute this software for general public use are granted *
25 // * in compliance with any licensing, distribution and development *
26 // * policy adopted by the Geant4 Collaboration. This code has been *
27 // * written by QinetiQ Ltd for the European Space Agency, under ESA *
28 // * contract 17191/03/NL/LvH (Aurora Programme). *
29 // * *
30 // * By using, copying, modifying or distributing the software (or *
31 // * any work based on the software) you agree to acknowledge its *
32 // * use in resulting scientific publications, and indicate your *
33 // * acceptance of all terms of the Geant4 Software license. *
34 // ********************************************************************
35 //
36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 //
38 // MODULE: G4NuclearAbrasionGeometry.cc
39 //
40 // Version: B.1
41 // Date: 15/04/04
42 // Author: P R Truscott
43 // Organisation: QinetiQ Ltd, UK
44 // Customer: ESA/ESTEC, NOORDWIJK
45 // Contract: 17191/03/NL/LvH
46 //
47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 //
49 // CHANGE HISTORY
50 // --------------
51 //
52 // 18 November 2003, P R Truscott, QinetiQ Ltd, UK
53 // Created.
54 //
55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56 // Beta release
57 //
58 // 4 June 2004, J.P. Wellisch, CERN, Switzerland
59 // resolving technical portability issues.
60 //
61 // 12 June 2012, A. Ribon, CERN, Switzerland
62 // Fixing trivial warning errors of shadowed variables.
63 //
64 // 4 August 2015, A. Ribon, CERN, Switzerland
65 // Replacing std::pow with the faster G4Pow.
66 //
67 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 //
71 #include "G4WilsonRadius.hh"
72 #include "G4PhysicalConstants.hh"
73 #include "G4SystemOfUnits.hh"
74 #include "G4Pow.hh"
76 //
78  G4double AT1, G4double r1)
79 {
80 //
81 //
82 // Initialise variables for interaction geometry.
83 //
84  G4WilsonRadius aR;
85  AP = AP1;
86  AT = AT1;
87  rP = aR.GetWilsonRadius(AP);
88  rT = aR.GetWilsonRadius(AT);
89  r = r1;
90  n = rP / (rP + rT);
91  b = r / (rP + rT);
92  m = rT / rP;
93  Q = (1.0 - b)/n;
94  S = Q * Q;
95  T = S * Q;
96  R = std::sqrt(m*n);
97  U = 1.0/m - 2.0;
98 //
99 //
100 // Initialise the threshold radius-ratio at which interactions are considered
101 // peripheral or central.
102 //
103  rth = 2.0/3.0;
104  B = 10.0 * MeV;
105 }
107 //
109 {;}
111 //
113  {if (rth1 > 0.0 && rth1 <= 1.0) rth = rth1;}
115 //
117  {return rth;}
119 //
121 {
122 //
123 //
124 // Initialise the value for P, then determine the actual value depending upon
125 // whether the projectile is larger or smaller than the target and these radii
126 // in relation to the impact parameter.
127 //
128  G4double valueP = 0.0;
129 
130  if (rT > rP)
131  {
132  if (rT-rP<=r && r<=rT+rP) valueP = 0.125*R*U*S - 0.125*(0.5*R*U+1.0)*T;
133  else valueP = -1.0;
134  }
135  else
136  {
137  if (rP-rT<=r && r<=rP+rT) valueP = 0.125*R*U*S - 0.125*(0.5*std::sqrt(n/m)*U-
138  (std::sqrt(1.0-m*m)/n - 1.0)*std::sqrt((2.0-m)/G4Pow::GetInstance()->powN(m,5)))*T;
139  else valueP = (std::sqrt(1.0-m*m)/n-1.0)*std::sqrt(1.0-b*b/n/n);
140  }
141 
142  if (!(valueP <= 1.0 && valueP>= -1.0))
143  {
144  if (valueP > 1.0) valueP = 1.0;
145  else valueP = -1.0;
146  }
147  return valueP;
148 }
150 //
152 {
153 //
154 //
155 // Initialise the value for F, then determine the actual value depending upon
156 // whether the projectile is larger or smaller than the target and these radii
157 // in relation to the impact parameter.
158 //
159  G4double valueF = 0.0;
160 
161  if (rT > rP)
162  {
163  if (rT-rP<=r && r<=rT+rP) valueF = 0.75*R*S - 0.125*(3.0*R-1.0)*T;
164  else valueF = 1.0;
165  }
166  else
167  {
168  if (rP-rT<=r && r<=rP+rT) valueF = 0.75*R*S - 0.125*(3.0*std::sqrt(n/m)-
169  (1.0-G4Pow::GetInstance()->powA(1.0-m*m,3.0/2.0))*std::sqrt(1.0-G4Pow::GetInstance()->powN(1.0-m,2))/G4Pow::GetInstance()->powN(m,3))*T;
170  else valueF = (1.0-G4Pow::GetInstance()->powA(1.0-m*m,3.0/2.0))*std::sqrt(1.0-b*b/n/n);
171  }
172 
173  if (!(valueF <= 1.0 && valueF>= 0.0))
174  {
175  if (valueF > 1.0) valueF = 1.0;
176  else valueF = 0.0;
177  }
178  return valueF;
179 }
181 //
183 {
184  G4double F1 = F();
185  G4double P1 = P();
186  G4double Es = 0.0;
187 
188  Es = 0.95 * MeV * 4.0 * pi * rP*rP/fermi/fermi *
189  (1.0+P1-G4Pow::GetInstance()->A23(1.0-F1));
190 // if (rT < rP && r < rP-rT)
191  if ((r-rP)/rT < rth)
192  {
193  G4double omega = 0.0;
194  if (AP < 12.0) omega = 1500.0;
195  else if (AP <= 16.0) omega = 1500.0 - 320.0*(AP-12.0);
196  Es *= 1.0 + F1*(5.0+omega*F1*F1);
197  }
198 
199  if (Es < 0.0)
200  Es = 0.0;
201  else if (Es > B * AP)
202  Es = B * AP;
203  return Es;
204 }
205 
206 
208 {
209  // This member function declares a new G4NuclearAbrasionGeometry object
210  // but with the projectile and target exchanged to determine the values
211  // for F and P. Determination of the excess surface area and excitation
212  // energy is as above.
213 
214  G4NuclearAbrasionGeometry* revAbrasionGeometry =
216  G4double F1 = revAbrasionGeometry->F();
217  G4double P1 = revAbrasionGeometry->P();
218  G4double Es = 0.0;
219 
220  Es = 0.95 * MeV * 4.0 * pi * rT*rT/fermi/fermi *
221  (1.0+P1-G4Pow::GetInstance()->A23(1.0-F1));
222 
223 // if (rP < rT && r < rT-rP)
224  if ((r-rT)/rP < rth) {
225  G4double omega = 0.0;
226  if (AT < 12.0) omega = 1500.0;
227  else if (AT <= 16.0) omega = 1500.0 - 320.0*(AT-12.0);
228  Es *= 1.0 + F1*(5.0+omega*F1*F1);
229  }
230 
231  if (Es < 0.0)
232  Es = 0.0;
233  else if (Es > B * AT)
234  Es = B * AT;
235 
236  delete revAbrasionGeometry;
237 
238  return Es;
239 }
static constexpr double MeV
Definition: G4SIunits.hh:214
G4double A23(G4double A) const
Definition: G4Pow.hh:143
G4NuclearAbrasionGeometry(G4double AP, G4double AT, G4double r)
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:177
double G4double
Definition: G4Types.hh:76
static constexpr double fermi
Definition: G4SIunits.hh:103
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:242
G4double GetWilsonRadius(G4double A)
static const G4double * P1[nN]
static constexpr double pi
Definition: G4SIunits.hh:75