73 useSCO(false),isInitialised(false),isActive(true),minZ(3),minA(5)
144 ed <<
"G4PreCompoundModel is used for ";
153 if(primary ==
proton) { Zp = 1; }
180 for(G4ReactionProductVector::iterator i= result->begin();
181 i != result->end(); ++i)
185 (*i)->GetTotalEnergy(),
186 (*i)->GetMomentum());
188 G4double time=(*i)->GetFormationTime();
189 if(time < 0.0) { time = 0.0; }
190 aNew.SetTime(timePrimary + time);
191 aNew.SetCreatorModelType((*i)->GetCreatorModel());
223 static const G4int countmax = 1000;
227 G4int EquilibriumExcitonNumber =
238 G4bool ThereIsTransition =
false;
254 if (test <= EquilibriumExcitonNumber) { go_ahead=
true; }
265 G4double TotalTransitionProbability =
276 if(!go_ahead || P1 <= P2+P3 ||
303 G4double TotalProbability = TotalEmissionProbability
304 + TotalTransitionProbability;
307 if (TotalProbability*
G4UniformRand() > TotalEmissionProbability)
311 ThereIsTransition =
true;
319 ThereIsTransition =
false;
324 }
while (ThereIsTransition);
327 if(count >= countmax) {
329 ed <<
"G4PreCompoundModel loop over " << countmax <<
" iterations; "
330 <<
"current G4Fragment: \n" << aFragment;
392 ed <<
"Obsolete method of the preCompound model is called: "
393 << mname <<
"() \n Instead a corresponding method of "
394 <<
"G4DeexPrecoParameters class should be used";
406 <<
"The GEANT4 precompound model is considered as an extension of the\n"
407 <<
"hadron kinetic model. It gives a possibility to extend the low energy range\n"
408 <<
"of the hadron kinetic model for nucleon-nucleus inelastic collision and it \n"
409 <<
"provides a ”smooth” transition from kinetic stage of reaction described by the\n"
410 <<
"hadron kinetic model to the equilibrium stage of reaction described by the\n"
411 <<
"equilibrium deexcitation models.\n"
412 <<
"The initial information for calculation of pre-compound nuclear stage\n"
413 <<
"consists of the atomic mass number A, charge Z of residual nucleus, its\n"
414 <<
"four momentum P0 , excitation energy U and number of excitons n, which equals\n"
415 <<
"the sum of the number of particles p (from them p_Z are charged) and the number of\n"
417 <<
"At the preequilibrium stage of reaction, we follow the exciton model approach in ref. [1],\n"
418 <<
"taking into account the competition among all possible nuclear transitions\n"
419 <<
"with ∆n = +2, −2, 0 (which are defined by their associated transition probabilities) and\n"
420 <<
"the emission of neutrons, protons, deutrons, thritium and helium nuclei (also defined by\n"
421 <<
"their associated emission probabilities according to exciton model)\n"
423 <<
"[1] K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A401 329 (1983)\n"
429 outFile <<
"description of precompound model as used with DeExcite()" <<
"\n";
G4int GetMinZForPreco() const
void SetExcitationHandler(G4ExcitationHandler *ptr)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4bool NeverGoBack() const
G4double GetTransitionProb3() const
G4HadFinalState theResult
void UseDefaultEmission()
std::ostringstream G4ExceptionDescription
G4bool PrecoDummy() const
G4ReactionProduct * PerformEmission(G4Fragment &aFragment)
void SetNumberOfHoles(G4int valueTot, G4int valueP=0)
void SetCreationTime(G4double time)
G4DeexPrecoParameters * GetParameters()
G4ExcitationHandler * GetExcitationHandler() const
G4PreCompoundEmission * theEmission
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus) final
static G4NuclearLevelData * GetInstance()
const G4String & GetParticleName() const
static const G4double * P2[nN]
G4double GetPrecoLowEnergy() const
virtual ~G4PreCompoundModel()
static constexpr double pi2
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
static G4Proton * Proton()
G4bool UseSoftCutoff() const
virtual G4double CalculateProbability(const G4Fragment &aFragment)=0
void PerformEquilibriumEmission(const G4Fragment &aFragment, G4ReactionProductVector *theResult) const
virtual void ModelDescription(std::ostream &outFile) const final
virtual void BuildPhysicsTable(const G4ParticleDefinition &) final
void UseCEMtr(G4bool use)
G4double GetGlobalTime() const
virtual void DeExciteModelDescription(std::ostream &outFile) const final
void UseGNASHTransition()
double A(double temperature)
static G4double GetNuclearMass(const G4double A, const G4double Z)
void SetNumberOfExcitedParticle(G4int valueTot, G4int valueP)
G4double GetTotalProbability(const G4Fragment &aFragment)
virtual void PerformTransition(G4Fragment &aFragment)=0
G4PreCompoundModel(G4ExcitationHandler *ptr=nullptr)
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4double GetTransitionProb2() const
const G4LorentzVector & Get4Momentum() const
G4double G4ParticleHPJENDLHEData::G4double result
void PrintWarning(const G4String &mname)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
const G4ParticleDefinition * GetDefinition() const
G4double GetLevelDensity() const
void UseDefaultTransition()
const G4ParticleDefinition * proton
static G4Neutron * Neutron()
virtual void InitialiseModel() final
G4int GetPrecoModelType() const
G4double GetTransitionProb1() const
const G4ParticleDefinition * neutron
static const G4double * P1[nN]
G4int GetMinAForPreco() const
CLHEP::HepLorentzVector G4LorentzVector
G4int GetNumberOfExcitons() const
G4VPreCompoundTransitions * theTransition
G4double GetExcitationEnergy() const
void SetStatusChange(G4HadFinalStateStatus aS)
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment) final