65 if ( products != NULL )
70 for (
G4int j = 0; j <
int( products->size() ); j++ )
72 G4int jZ = (*products)[j].Z;
73 G4int jA = (*products)[j].A;
82 if ( jZ == iZ + ipZ && jA == iA + ipA ) needResidual =
false;
84 G4ThreeVector dp((*products)[j].px,(*products)[j].py,(*products)[j].pz);
89 if ( jA == 1 && jZ == 1 ) {
93 else if ( jA == 1 && jZ == 0 )
138 G4FragmentVector::iterator it;
140 for ( it = products_from_PE->begin(); it != products_from_PE->end(); it++)
142 if ( (*it)->GetZ_asInt() == iZ + ipZ && (*it)->GetA_asInt() == iA + ipA ) needResidual =
false;
144 if ( (*it)->GetParticleDefinition() != NULL ) {
158 if ( needResidual ) {
CLHEP::Hep3Vector G4ThreeVector
G4int GetAtomicNumber() const
virtual void SetICM(G4bool)
static constexpr double MeV
static G4IonTable * GetIonTable()
std::vector< G4GIDI_Product > * getCaptureFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
static G4Proton * Proton()
G4LENDManager * lend_manager
G4int GetNucleusEncoding(G4int iZ, G4int iA, G4int iM)
const G4Material * GetMaterial() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
const G4Isotope * GetIsotope()
G4HadFinalState * returnUnchanged(const G4HadProjectile &aTrack, G4HadFinalState *theResult)
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
void Set4Momentum(const G4LorentzVector &momentum)
const G4LorentzVector & Get4Momentum() const
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
static G4Neutron * Neutron()
G4int GetAtomicMass() const
void SetMomentum(const G4ThreeVector &momentum)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
CLHEP::HepLorentzVector G4LorentzVector
std::vector< G4Fragment * > G4FragmentVector
G4GIDI_target * get_target_from_map(G4int nuclear_code)
G4HadFinalState theParticleChange
void SetStatusChange(G4HadFinalStateStatus aS)
G4double GetTemperature() const