Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4LENDCapture.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 
27 #include "G4LENDCapture.hh"
28 #include "G4Fragment.hh"
29 #include "G4PhotonEvaporation.hh"
30 #include "G4SystemOfUnits.hh"
31 #include "G4Nucleus.hh"
32 #include "G4ParticleTable.hh"
33 #include "G4IonTable.hh"
34 
36 {
37 
38  G4double temp = aTrack.GetMaterial()->GetTemperature();
39 
40  //G4int iZ = int ( aTarg.GetZ() );
41  //G4int iA = int ( aTarg.GetN() );
42  //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
43  G4int iZ = aTarg.GetZ_asInt();
44  G4int iA = aTarg.GetA_asInt();
45  G4int iM = 0;
46  if ( aTarg.GetIsotope() != NULL ) {
47  iM = aTarg.GetIsotope()->Getm();
48  }
49 
50  G4double ke = aTrack.GetKineticEnergy();
51 
52  G4HadFinalState* theResult = &theParticleChange;
53  theResult->Clear();
54 
56  if ( aTarget == NULL ) return returnUnchanged( aTrack , theResult );
57  std::vector<G4GIDI_Product>* products = aTarget->getCaptureFinalState( ke*MeV, temp, MyRNG, NULL );
58 
59  G4int ipZ = aTrack.GetDefinition()->GetAtomicNumber();
60  G4int ipA = aTrack.GetDefinition()->GetAtomicMass();
61 
62  G4bool needResidual=true;
63 
64  G4ThreeVector p(0,0,0);
65  if ( products != NULL )
66  {
67 
68  G4int totN = 0;
69 
70  for ( G4int j = 0; j < int( products->size() ); j++ )
71  {
72  G4int jZ = (*products)[j].Z;
73  G4int jA = (*products)[j].A;
74 
75  //G4cout << "ZA = " << 1000 * (*products)[j].Z + (*products)[j].A << " EK = "
76  // << (*products)[j].kineticEnergy
77  // << " px " << (*products)[j].px
78  // << " py " << (*products)[j].py
79  // << " pz " << (*products)[j].pz
80  // << G4endl;
81 
82  if ( jZ == iZ + ipZ && jA == iA + ipA ) needResidual = false;
83 
84  G4ThreeVector dp((*products)[j].px,(*products)[j].py,(*products)[j].pz);
85  p += dp;
86 
88 
89  if ( jA == 1 && jZ == 1 ) {
90  theSec->SetDefinition( G4Proton::Proton() );
91  totN += 1;
92  }
93  else if ( jA == 1 && jZ == 0 )
94  {
95  theSec->SetDefinition( G4Neutron::Neutron() );
96  totN += 1;
97  }
98  else if ( jZ > 0 ) {
99  if ( jA != 0 )
100  {
101  theSec->SetDefinition( G4IonTable::GetIonTable()->GetIon( jZ , jA , iM ) );
102  totN += jA;
103  }
104  else
105  {
106  theSec->SetDefinition( G4IonTable::GetIonTable()->GetIon( jZ , iA+1-totN , iM ) );
107  }
108  }
109  else {
110  theSec->SetDefinition( G4Gamma::Gamma() );
111  }
112 
113  theSec->SetMomentum( G4ThreeVector( (*products)[j].px*MeV , (*products)[j].py*MeV , (*products)[j].pz*MeV ) );
114 
115 /*
116  if ( dp.mag() == 0 )
117  {
118  //theSec->SetMomentum( -p*MeV );
119  }
120 */
121 
122  theResult->AddSecondary( theSec );
123  }
124  }
125  else
126  {
127 
128  //For the case data does not provide final states
129 
130  //G4cout << "products != NULL; iZ = " << iZ << ", iA = " << iA << G4endl;
131 
132  // TK comment
133  // aTarg->ReturnTargetParticle()->Get4Momentum has trouble, thus we use following
134  G4Fragment nucleus( iA + ipA , iZ + ipZ , aTrack.Get4Momentum() + G4LorentzVector( G4ThreeVector(0,0,0) , G4IonTable::GetIonTable()->GetIon( iZ + ipZ , iA )->GetPDGMass() ) );
135  G4PhotonEvaporation photonEvaporation;
136  photonEvaporation.SetICM( TRUE );
137  G4FragmentVector* products_from_PE = photonEvaporation.BreakItUp(nucleus);
138  G4FragmentVector::iterator it;
139 
140  for ( it = products_from_PE->begin(); it != products_from_PE->end(); it++)
141  {
142  if ( (*it)->GetZ_asInt() == iZ + ipZ && (*it)->GetA_asInt() == iA + ipA ) needResidual = false;
143  G4DynamicParticle* theSec = new G4DynamicParticle;
144  if ( (*it)->GetParticleDefinition() != NULL ) {
145  //G4cout << (*it)->GetParticleDefinition()->GetParticleName() << G4endl;
146  theSec->SetDefinition( (*it)->GetParticleDefinition() );
147  theSec->Set4Momentum( (*it)->GetMomentum() );
148  } else {
149  //G4cout << (*it)->GetZ_asInt() << " " << (*it)->GetA_asInt() << G4endl;
150  theSec->SetDefinition( G4IonTable::GetIonTable()->GetIon( (*it)->GetZ_asInt() , (*it)->GetA_asInt() ) );
151  theSec->Set4Momentum( (*it)->GetMomentum() );
152  }
153  theResult->AddSecondary( theSec );
154  }
155  }
156 
157  //if necessary, generate residual nucleus
158  if ( needResidual ) {
159  G4DynamicParticle* residual = new G4DynamicParticle;
160  residual->SetDefinition( G4IonTable::GetIonTable()->GetIon( iZ + ipZ , iA + ipA ) );
161  residual->SetMomentum( -p*MeV );
162  theResult->AddSecondary( residual );
163  }
164 
165  delete products;
166 
167  theResult->SetStatusChange( stopAndKill );
168 
169  return theResult;
170 
171 }
CLHEP::Hep3Vector G4ThreeVector
G4int GetAtomicNumber() const
virtual void SetICM(G4bool)
static constexpr double MeV
Definition: G4SIunits.hh:214
static G4IonTable * GetIonTable()
Definition: G4IonTable.hh:78
const char * p
Definition: xmltok.h:285
std::vector< G4GIDI_Product > * getCaptureFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
G4LENDManager * lend_manager
Definition: G4LENDModel.hh:84
G4int GetNucleusEncoding(G4int iZ, G4int iA, G4int iM)
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
const G4Material * GetMaterial() const
double MyRNG(void *)
Definition: G4LENDModel.cc:45
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
const G4Isotope * GetIsotope()
Definition: G4Nucleus.hh:119
G4HadFinalState * returnUnchanged(const G4HadProjectile &aTrack, G4HadFinalState *theResult)
Definition: G4LENDModel.cc:253
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
void Set4Momentum(const G4LorentzVector &momentum)
#define TRUE
Definition: globals.hh:55
G4int Getm() const
Definition: G4Isotope.hh:100
const G4LorentzVector & Get4Momentum() const
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
int G4int
Definition: G4Types.hh:78
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4int GetAtomicMass() const
void SetMomentum(const G4ThreeVector &momentum)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
CLHEP::HepLorentzVector G4LorentzVector
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:63
G4GIDI_target * get_target_from_map(G4int nuclear_code)
Definition: G4LENDModel.cc:267
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
void SetStatusChange(G4HadFinalStateStatus aS)
G4double GetTemperature() const
Definition: G4Material.hh:183