Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4QMDCollision.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // 080602 Fix memory leaks by T. Koi
27 // 081120 Add deltaT in signature of CalKinematicsOfBinaryCollisions
28 // Add several required updating of Mean Filed
29 // Modified handling of absorption case by T. Koi
30 // 090126 Fix in absorption case by T. Koi
31 // 090331 Fix for gamma participant by T. Koi
32 //
33 #include "G4QMDCollision.hh"
34 #include "G4Scatterer.hh"
35 #include "G4Pow.hh"
36 #include "G4Exp.hh"
37 #include "G4Log.hh"
38 #include "G4PhysicalConstants.hh"
39 #include "G4SystemOfUnits.hh"
40 #include "Randomize.hh"
41 
43 : fdeltar ( 4.0 )
44 , fbcmax0 ( 1.323142 ) // NN maximum impact parameter
45 , fbcmax1 ( 2.523 ) // others maximum impact parameter
46 // , sig0 ( 55 ) // NN cross section
47 //110617 fix for gcc 4.6 compilation warnings
48 //, sig1 ( 200 ) // others cross section
49 , fepse ( 0.0001 )
50 {
51  //These two pointers will be set through SetMeanField method
52  theSystem=NULL;
53  theMeanField=NULL;
54  theScatterer = new G4Scatterer();
55 }
56 
57 /*
58 G4QMDCollision::G4QMDCollision( const G4QMDCollision& obj )
59 : fdeltar ( obj.fdeltar )
60 , fbcmax0 ( obj.fbcmax0 ) // NN maximum impact parameter
61 , fbcmax1 ( obj.fbcmax1 ) // others maximum impact parameter
62 , fepse ( obj.fepse )
63 {
64 
65  if ( obj.theSystem != NULL ) {
66  theSystem = new G4QMDSystem;
67  *theSystem = *obj.theSystem;
68  } else {
69  theSystem = NULL;
70  }
71  if ( obj.theMeanField != NULL ) {
72  theMeanField = new G4QMDMeanField;
73  *theMeanField = *obj.theMeanField;
74  } else {
75  theMeanField = NULL;
76  }
77  theScatterer = new G4Scatterer();
78  *theScatterer = *obj.theScatterer;
79 }
80 
81 G4QMDCollision & G4QMDCollision::operator= ( const G4QMDCollision& obj)
82 {
83  fdeltar = obj.fdeltar;
84  fbcmax0 = obj.fbcmax1;
85  fepse = obj.fepse;
86 
87  if ( obj.theSystem != NULL ) {
88  delete theSystem;
89  theSystem = new G4QMDSystem;
90  *theSystem = *obj.theSystem;
91  } else {
92  theSystem = NULL;
93  }
94  if ( obj.theMeanField != NULL ) {
95  delete theMeanField;
96  theMeanField = new G4QMDMeanField;
97  *theMeanField = *obj.theMeanField;
98  } else {
99  theMeanField = NULL;
100  }
101  delete theScatterer;
102  theScatterer = new G4Scatterer();
103  *theScatterer = *obj.theScatterer;
104 
105  return *this;
106 }
107 */
108 
109 
111 {
112  //if ( theSystem != NULL ) delete theSystem;
113  //if ( theMeanField != NULL ) delete theMeanField;
114  delete theScatterer;
115 }
116 
117 
119 {
120  G4double deltaT = dt;
121 
123 //081118
124  //G4int nb = 0;
125  for ( G4int i = 0 ; i < n ; i++ )
126  {
129  //nb += theSystem->GetParticipant( i )->GetBaryonNumber();
130  }
131  //G4cout << "nb = " << nb << " n = " << n << G4endl;
132 
133 
134 //071101
135  for ( G4int i = 0 ; i < n ; i++ )
136  {
137 
138  //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl;
139 
141  {
142 
143  G4bool decayed = false;
144 
148 
150 
151  G4double eini = theMeanField->GetTotalPotential() + p40.e();
152 
154  G4int i0 = 0;
155 
156  G4bool isThisEnergyOK = false;
157 
158  G4int maximumNumberOfTrial=4;
159  for ( G4int ii = 0 ; ii < maximumNumberOfTrial ; ii++ )
160  {
161 
162  //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum();
163  G4LorentzVector p400 = p40;
164 
165  p400 *= GeV;
166  //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 );
167  G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 );
168  //std::cout << "G4KineticTrack " << i << " " << kt.GetDefinition()->GetParticleName() << kt.GetPosition() << std::endl;
169  G4KineticTrackVector* secs = NULL;
170  secs = kt.Decay();
171  G4int id = 0;
172  G4double et = 0;
173  if ( secs )
174  {
175  for ( G4KineticTrackVector::iterator it
176  = secs->begin() ; it != secs->end() ; it++ )
177  {
178 /*
179  G4cout << "G4KineticTrack"
180  << " " << (*it)->GetDefinition()->GetParticleName()
181  << " " << (*it)->Get4Momentum()
182  << " " << (*it)->GetPosition()/fermi
183  << G4endl;
184 */
185  if ( id == 0 )
186  {
187  theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
188  theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV );
189  theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi );
190  //theMeanField->Cal2BodyQuantities( i );
191  et += (*it)->Get4Momentum().e()/GeV;
192  }
193  if ( id > 0 )
194  {
195  // Append end;
196  theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) );
197  et += (*it)->Get4Momentum().e()/GeV;
198  if ( id > 1 )
199  {
200  //081118
201  //G4cout << "G4QMDCollision id >2; id= " << id << G4endl;
202  }
203  }
204  id++; // number of daughter particles
205 
206  delete *it;
207  }
208 
209  theMeanField->Update();
210  i0 = id-1; // 0 enter to i
211 
212  delete secs;
213  }
214 
215 // EnergyCheck
216 
217  G4double efin = theMeanField->GetTotalPotential() + et;
218  //std::cout << std::abs ( eini - efin ) - fepse << std::endl;
219 // std::cout << std::abs ( eini - efin ) - fepse*10 << std::endl;
220 // *10 TK
221  if ( std::abs ( eini - efin ) < fepse*10 )
222  {
223  // Energy OK
224  isThisEnergyOK = true;
225  break;
226  }
227  else
228  {
229 
230  theSystem->GetParticipant( i )->SetDefinition( pd0 );
231  theSystem->GetParticipant( i )->SetPosition( r0 );
232  theSystem->GetParticipant( i )->SetMomentum( p0 );
233 
234  //for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ )
235  //160210 deletion must be done in descending order
236  for ( G4int i0i = id-2 ; 0 <= i0i ; i0i-- ) {
237  //081118
238  //std::cout << "Decay Energitically Blocked deleteing " << i0i+n0 << std::endl;
239  theSystem->DeleteParticipant( i0i+n0 );
240  }
241  //081103
242  theMeanField->Update();
243  }
244 
245  }
246 
247 
248 // Pauli Check
249  if ( isThisEnergyOK == true )
250  {
251  if ( theMeanField->IsPauliBlocked ( i ) != true )
252  {
253 
254  G4bool allOK = true;
255  for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
256  {
257  if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true )
258  {
259  allOK = false;
260  break;
261  }
262  }
263 
264  if ( allOK )
265  {
266  decayed = true; //Decay Succeeded
267  }
268  }
269 
270  }
271 //
272 
273  if ( decayed )
274  {
275  //081119
276  //G4cout << "Decay Suceeded! " << std::endl;
278  for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
279  {
280  theSystem->GetParticipant( i0i+n0 )->SetHitMark();
281  }
282 
283  }
284  else
285  {
286 
287 // Decay Blocked and re-enter orginal participant;
288 
289  if ( isThisEnergyOK == true ) // for false case already done
290  {
291 
292  theSystem->GetParticipant( i )->SetDefinition( pd0 );
293  theSystem->GetParticipant( i )->SetPosition( r0 );
294  theSystem->GetParticipant( i )->SetMomentum( p0 );
295 
296  for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
297  {
298  //081118
299  //std::cout << "Decay Blocked deleteing " << i0i+n0 << std::endl;
300  //160210 adding commnet: deletion must be done in descending order
301  theSystem->DeleteParticipant( i0+n0-i0i-1 );
302  }
303  //081103
304  theMeanField->Update();
305  }
306 
307  }
308 
309  } //shortlive
310  } // go next participant
311 //071101
312 
313 
315 
316 //081118
317  //for ( G4int i = 1 ; i < n ; i++ )
318  for ( G4int i = 1 ; i < theSystem->GetTotalNumberOfParticipant() ; i++ )
319  {
320 
321  //std::cout << "Collision i " << i << std::endl;
322  if ( theSystem->GetParticipant( i )->IsThisHit() ) continue;
323 
326  G4double rmi = theSystem->GetParticipant( i )->GetMass();
328 //090331 gamma
329  if ( pdi->GetPDGMass() == 0.0 ) continue;
330 
331  //std::cout << " p4i00 " << p4i << std::endl;
332  for ( G4int j = 0 ; j < i ; j++ )
333  {
334 
335 
336 /*
337  G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << G4endl;
338  G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << G4endl;
339  G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << G4endl;
340  G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << G4endl;
341 */
342 
343  // Only 1 Collision allowed for each particle in a time step.
344  //081119
345  if ( theSystem->GetParticipant( i )->IsThisHit() ) continue;
346  if ( theSystem->GetParticipant( j )->IsThisHit() ) continue;
347 
348  //std::cout << "Collision " << i << " " << j << std::endl;
349 
350  // Do not allow collision between nucleons in target/projectile til its first collision.
352  {
353  if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue;
354  }
355  else if ( theSystem->GetParticipant( i )->IsThisTarget() )
356  {
357  if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue;
358  }
359 
360 
363  G4double rmj = theSystem->GetParticipant( j )->GetMass();
365 //090331 gamma
366  if ( pdj->GetPDGMass() == 0.0 ) continue;
367 
368  G4double rr2 = theMeanField->GetRR2( i , j );
369 
370 // Here we assume elab (beam momentum less than 5 GeV/n )
371  if ( rr2 > fdeltar*fdeltar ) continue;
372 
373  //G4double s = (p4i+p4j)*(p4i+p4j);
374  //G4double srt = std::sqrt ( s );
375 
376  G4double srt = std::sqrt( (p4i+p4j)*(p4i+p4j) );
377 
378  G4double cutoff = 0.0;
379  G4double fbcmax = 0.0;
380  //110617 fix for gcc 4.6 compilation warnings
381  //G4double sig = 0.0;
382 
383  if ( rmi < 0.94 && rmj < 0.94 )
384  {
385 // nucleon or pion case
386  cutoff = rmi + rmj + 0.02;
387  fbcmax = fbcmax0;
388  //110617 fix for gcc 4.6 compilation warnings
389  //sig = sig0;
390  }
391  else
392  {
393  cutoff = rmi + rmj;
394  fbcmax = fbcmax1;
395  //110617 fix for gcc compilation warnings
396  //sig = sig1;
397  }
398 
399  //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl;
400  if ( srt < cutoff ) continue;
401 
402  G4ThreeVector dr = ri - rj;
403  G4double rsq = dr*dr;
404 
405  G4double pij = p4i*p4j;
406  G4double pidr = p4i.vect()*dr;
407  G4double pjdr = p4j.vect()*dr;
408 
409  G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij );
410  G4double bij = pidr / rmi - pjdr*rmi/pij;
411  G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi );
412  G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) );
413 
414  if ( brel > fbcmax ) continue;
415  //std::cout << "collisions3 " << std::endl;
416 
417  G4double bji = -pjdr/rmj + pidr * rmj /pij;
418 
419  G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi;
420  G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj;
421 
422 
423 /*
424  G4cout << "collisions4 p4i " << p4i << G4endl;
425  G4cout << "collisions4 ri " << ri << G4endl;
426  G4cout << "collisions4 p4j " << p4j << G4endl;
427  G4cout << "collisions4 rj " << rj << G4endl;
428  G4cout << "collisions4 dr " << dr << G4endl;
429  G4cout << "collisions4 pij " << pij << G4endl;
430  G4cout << "collisions4 aij " << aij << G4endl;
431  G4cout << "collisions4 bij bji " << bij << " " << bji << G4endl;
432  G4cout << "collisions4 pidr pjdr " << pidr << " " << pjdr << G4endl;
433  G4cout << "collisions4 p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << G4endl;
434  G4cout << "collisions4 rmi rmj " << rmi << " " << rmj << G4endl;
435  G4cout << "collisions4 " << ti << " " << tj << G4endl;
436 */
437  if ( std::abs ( ti + tj ) > deltaT ) continue;
438  //std::cout << "collisions4 " << std::endl;
439 
440  G4ThreeVector beta = ( p4i + p4j ).boostVector();
441 
442  G4LorentzVector p = p4i;
443  G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) );
444  G4ThreeVector pcm = p4icm.vect();
445 
446  G4double prcm = pcm.mag();
447 
448  if ( prcm <= 0.00001 ) continue;
449  //std::cout << "collisions5 " << std::endl;
450 
451  G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library
452  //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic
453 
454 /*
455  G4bool pauli_blocked = false;
456  if ( energetically_forbidden == false ) // result true
457  {
458  if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true )
459  {
460  pauli_blocked = true;
461  //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl;
462  }
463  }
464  else
465  {
466  if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true )
467  pauli_blocked = false;
468  //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl;
469  }
470 */
471 
472 /*
473  G4cout << "G4QMDRESULT Collsion initial p4 i and j "
474  << p4i << " " << p4j
475  << G4endl;
476 */
477 // 081118
478  //if ( energetically_forbidden == true || pauli_blocked == true )
479  if ( energetically_forbidden == true )
480  {
481 
482  //G4cout << " energetically_forbidden " << G4endl;
483 // Collsion not allowed then re enter orginal participants
484 // Now only momentum, becasuse we only consider elastic scattering of nucleons
485 
486  theSystem->GetParticipant( i )->SetMomentum( p4i.vect() );
487  theSystem->GetParticipant( i )->SetDefinition( pdi );
488  theSystem->GetParticipant( i )->SetPosition( ri );
489 
490  theSystem->GetParticipant( j )->SetMomentum( p4j.vect() );
491  theSystem->GetParticipant( j )->SetDefinition( pdj );
492  theSystem->GetParticipant( j )->SetPosition( rj );
493 
496 
497  }
498  else
499  {
500 
501 
502  G4bool absorption = false;
503  if ( n == theSystem->GetTotalNumberOfParticipant()+1 ) absorption = true;
504  if ( absorption )
505  {
506  //G4cout << "Absorption happend " << G4endl;
507  i = i-1;
508  n = n-1;
509  }
510 
511 // Collsion allowed (really happened)
512 
513  // Unset Projectile/Target flag
515  if ( !absorption ) theSystem->GetParticipant( j )->UnsetInitialMark();
516 
518  if ( !absorption ) theSystem->GetParticipant( j )->SetHitMark();
519 
521 
522 /*
523  G4cout << "G4QMDRESULT Collsion Really Happened between "
524  << i << " and " << j
525  << G4endl;
526  G4cout << "G4QMDRESULT Collsion initial p4 i and j "
527  << p4i << " " << p4j
528  << G4endl;
529  G4cout << "G4QMDRESULT Collsion after p4 i and j "
530  << theSystem->GetParticipant( i )->Get4Momentum()
531  << " "
532  << theSystem->GetParticipant( j )->Get4Momentum()
533  << G4endl;
534  G4cout << "G4QMDRESULT Collsion Diff "
535  << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum()
536  << G4endl;
537  G4cout << "G4QMDRESULT Collsion initial r i and j "
538  << ri << " " << rj
539  << G4endl;
540  G4cout << "G4QMDRESULT Collsion after r i and j "
541  << theSystem->GetParticipant( i )->GetPosition()
542  << " "
543  << theSystem->GetParticipant( j )->GetPosition()
544  << G4endl;
545 */
546 
547 
548  }
549 
550  }
551 
552  }
553 
554 
555 }
556 
557 
558 
560 {
561 
562 //081103
563  //G4cout << "CalFinalStateOfTheBinaryCollision " << i << " " << j << " " << theSystem->GetTotalNumberOfParticipant() << G4endl;
564 
565  G4bool result = false;
566  G4bool energyOK = false;
567  G4bool pauliOK = false;
568  G4bool abs = false;
569  G4QMDParticipant* absorbed = NULL;
570 
573 
574 //071031
575 
577 
578  G4double eini = epot + p4i.e() + p4j.e();
579 
580 //071031
581  // will use KineticTrack
584  G4LorentzVector p4i0 = p4i*GeV;
585  G4LorentzVector p4j0 = p4j*GeV;
588 
589  for ( G4int iitry = 0 ; iitry < 4 ; iitry++ )
590  {
591 
592  abs = false;
593 
594  G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4i0 );
595  G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4j0 );
596 
597  G4LorentzVector p4ix_new;
598  G4LorentzVector p4jx_new;
599  G4KineticTrackVector* secs = NULL;
600  secs = theScatterer->Scatter( kt1 , kt2 );
601 
602  //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl;
603  //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl;
604  //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl;
605 
606 
607  if ( secs )
608  {
609  G4int iti = 0;
610  if ( secs->size() == 2 )
611  {
612  for ( G4KineticTrackVector::iterator it
613  = secs->begin() ; it != secs->end() ; it++ )
614  {
615  if ( iti == 0 )
616  {
617  theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
618  p4ix_new = (*it)->Get4Momentum()/GeV;
619  //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl;
620  theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
621  }
622  if ( iti == 1 )
623  {
624  theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() );
625  p4jx_new = (*it)->Get4Momentum()/GeV;
626  //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl;
627  theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() );
628  }
629  //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl;
630  iti++;
631  }
632  }
633  else if ( secs->size() == 1 )
634  {
635 //081118
636  abs = true;
637  //G4cout << "G4QMDCollision pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << G4endl;
638  //secs->front()->Decay();
639  theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() );
640  p4ix_new = secs->front()->Get4Momentum()/GeV;
641  theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
642 
643  }
644 
645 //081118
646  if ( secs->size() > 2 )
647  {
648 
649  G4cout << "G4QMDCollision secs size > 2; " << secs->size() << G4endl;
650 
651  for ( G4KineticTrackVector::iterator it
652  = secs->begin() ; it != secs->end() ; it++ )
653  {
654  G4cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << G4endl;
655  }
656 
657  }
658 
659  // deleteing KineticTrack
660  for ( G4KineticTrackVector::iterator it
661  = secs->begin() ; it != secs->end() ; it++ )
662  {
663  delete *it;
664  }
665 
666  delete secs;
667  }
668 //071031
669 
670  if ( !abs )
671  {
674  }
675  else
676  {
677  absorbed = theSystem->EraseParticipant( j );
678  theMeanField->Update();
679  }
680 
682 
683  G4double efin = epot + p4ix_new.e() + p4jx_new.e();
684 
685  //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
686 
687 /*
688  G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
689  G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
690  G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
691 */
692 
693 //071031
694  if ( std::abs ( eini - efin ) < fepse )
695  {
696  // Collison OK
697  //std::cout << "collisions6" << std::endl;
698  //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
699  //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
700  //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
701  //std::cout << "collisions before " << ri0/fermi << " " << rj0/fermi << std::endl;
702  //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
703  energyOK = true;
704  break;
705  }
706  else
707  {
708  //G4cout << "Energy Not OK " << G4endl;
709  if ( abs )
710  {
711  //G4cout << "TKDB reinsert j " << G4endl;
712  theSystem->InsertParticipant( absorbed , j );
713  theMeanField->Update();
714  }
715  // do not need reinsert in no absroption case
716  }
717 //071031
718  }
719 
720 // Energetically forbidden collision
721 
722  if ( energyOK )
723  {
724  // Pauli Check
725  //G4cout << "Pauli Checking " << theSystem->GetTotalNumberOfParticipant() << G4endl;
726  if ( !abs )
727  {
728  if ( !( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) )
729  {
730  //G4cout << "Binary Collision Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
731  pauliOK = true;
732  }
733  }
734  else
735  {
736  //if ( theMeanField->IsPauliBlocked ( i ) == false )
737  //090126 i-1 cause jth is erased
738  if ( theMeanField->IsPauliBlocked ( i-1 ) == false )
739  {
740  //G4cout << "Absorption Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
741  delete absorbed;
742  pauliOK = true;
743  }
744  }
745 
746 
747  if ( pauliOK )
748  {
749  result = true;
750  }
751  else
752  {
753  //G4cout << "Pauli Blocked" << G4endl;
754  if ( abs )
755  {
756  //G4cout << "TKDB reinsert j pauli block" << G4endl;
757  theSystem->InsertParticipant( absorbed , j );
758  theMeanField->Update();
759  }
760  }
761  }
762 
763  return result;
764 
765 }
766 
767 
768 
770 {
771 
772  //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl;
773 
774  G4bool result = true;
775 
777  G4double rmi = theSystem->GetParticipant( i )->GetMass();
779 
781  G4double rmj = theSystem->GetParticipant( j )->GetMass();
783 
784  G4double pr = prcm;
785 
786  G4double c2 = pcm.z()/pr;
787 
788  G4double csrt = srt - cutoff;
789 
790  //G4double pri = prcm;
791  //G4double prf = sqrt ( 0.25 * srt*srt -rm2 );
792 
793  G4double asrt = srt - rmi - rmj;
794  G4double pra = prcm;
795 
796 
797 
798  G4double elastic = 0.0;
799 
800  if ( zi == zj )
801  {
802  if ( csrt < 0.4286 )
803  {
804  elastic = 35.0 / ( 1. + csrt * 100.0 ) + 20.0;
805  }
806  else
807  {
808  elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
809  * 2. / pi + 1.0 ) * 9.65 + 7.0;
810  }
811  }
812  else
813  {
814  if ( csrt < 0.4286 )
815  {
816  elastic = 28.0 / ( 1. + csrt * 100.0 ) + 27.0;
817  }
818  else
819  {
820  elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
821  * 2. / pi + 1.0 ) * 12.34 + 10.0;
822  }
823  }
824 
825 // std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl;
826 // std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl;
827 
828 
829 // std::cout << "Collision sig " << i << " " << j << " " << sig << std::endl;
830  if ( G4UniformRand() > elastic / sig )
831  {
832  //std::cout << "Inelastic " << std::endl;
833  //std::cout << "elastic/sig " << elastic/sig << std::endl;
834  return result;
835  }
836  else
837  {
838  //std::cout << "Elastic " << std::endl;
839  }
840 // std::cout << "Collision ELSTIC " << i << " " << j << std::endl;
841 
842 
843  G4double as = G4Pow::GetInstance()->powN ( 3.65 * asrt , 6 );
844  G4double a = 6.0 * as / (1.0 + as);
845  G4double ta = -2.0 * pra*pra;
846  G4double x = G4UniformRand();
847  G4double t1 = G4Log( (1-x) * G4Exp(2.*a*ta) + x ) / a;
848  G4double c1 = 1.0 - t1/ta;
849 
850  if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0;
851 
852 /*
853  G4cout << "Collision as " << i << " " << j << " " << as << G4endl;
854  G4cout << "Collision a " << i << " " << j << " " << a << G4endl;
855  G4cout << "Collision ta " << i << " " << j << " " << ta << G4endl;
856  G4cout << "Collision x " << i << " " << j << " " << x << G4endl;
857  G4cout << "Collision t1 " << i << " " << j << " " << t1 << G4endl;
858  G4cout << "Collision c1 " << i << " " << j << " " << c1 << G4endl;
859 */
860  t1 = 2.0*pi*G4UniformRand();
861 // std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl;
862  G4double t2 = 0.0;
863  if ( pcm.x() == 0.0 && pcm.y() == 0 )
864  {
865  t2 = 0.0;
866  }
867  else
868  {
869  t2 = std::atan2( pcm.y() , pcm.x() );
870  }
871 // std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl;
872 
873  G4double s1 = std::sqrt ( 1.0 - c1*c1 );
874  G4double s2 = std::sqrt ( 1.0 - c2*c2 );
875 
876  G4double ct1 = std::cos(t1);
877  G4double st1 = std::sin(t1);
878 
879  G4double ct2 = std::cos(t2);
880  G4double st2 = std::sin(t2);
881 
882  G4double ss = c2*s1*ct1 + s2*c1;
883 
884  pcm.setX( pr * ( ss*ct2 - s1*st1*st2) );
885  pcm.setY( pr * ( ss*st2 + s1*st1*ct2) );
886  pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) );
887 
888 // std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl;
889 
891 
892  G4double eini = epot + p4i.e() + p4j.e();
893  G4double etwo = p4i.e() + p4j.e();
894 
895 /*
896  G4cout << "Collision epot " << i << " " << j << " " << epot << G4endl;
897  G4cout << "Collision eini " << i << " " << j << " " << eini << G4endl;
898  G4cout << "Collision etwo " << i << " " << j << " " << etwo << G4endl;
899 */
900 
901 
902  for ( G4int itry = 0 ; itry < 4 ; itry++ )
903  {
904 
905  G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm );
906  G4double pibeta = pcm*beta;
907 
908  G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm );
909 
910  G4ThreeVector pi_new = beta*trans + pcm;
911 
912  G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm );
913  trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm );
914 
915  G4ThreeVector pj_new = beta*trans - pcm;
916 
917 //
918 // Delete old
919 // Add new Particitipants
920 //
921 // Now only change momentum ( Beacuse we only have elastic sctter of nucleon
922 // In future Definition also will be change
923 //
924 
925  theSystem->GetParticipant( i )->SetMomentum( pi_new );
926  theSystem->GetParticipant( j )->SetMomentum( pj_new );
927 
928  G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e();
929  G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e();
930 
933 
935 
936  G4double efin = epot + pi_new_e + pj_new_e ;
937 
938  //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
939 /*
940  G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
941  G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
942  G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
943 */
944 
945 //071031
946  if ( std::abs ( eini - efin ) < fepse )
947  {
948  // Collison OK
949  //std::cout << "collisions6" << std::endl;
950  //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
951  //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
952  //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
953  //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl;
954  //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
955  }
956 //071031
957 
958  if ( std::abs ( eini - efin ) < fepse ) return result; // Collison OK
959 
960  G4double cona = ( eini - efin + etwo ) / gamma;
961  G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) *
962  ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) )
963  - 4.0 * rmi*rmi * rmj*rmj );
964 
965  if ( fac2 > 0 )
966  {
967  G4double fact = std::sqrt ( fac2 );
968  pcm = fact*pcm;
969  }
970 
971 
972  }
973 
974 // Energetically forbidden collision
975  result = false;
976 
977  return result;
978 
979 }
Float_t x
Definition: compare.C:6
G4int GetChargeInUnitOfEplus()
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
void SetDefinition(const G4ParticleDefinition *pd)
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
TTree * t1
Definition: plottest35.C:26
G4double GetTotalPotential()
G4double GetRR2(G4int i, G4int j)
const G4ParticleDefinition * GetDefinition()
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
G4double elastic(Particle const *const p1, Particle const *const p2)
#define G4endl
Definition: G4ios.hh:61
const char * p
Definition: xmltok.h:285
G4LorentzVector Get4Momentum()
Hep3Vector findBoostToCM() const
void SetMomentum(G4ThreeVector p)
double z() const
Double_t beta
G4double GetPDGMass() const
void setX(double)
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:177
G4Scatterer * theScatterer
void CalKinematicsOfBinaryCollisions(G4double)
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
static constexpr double fermi
Definition: G4SIunits.hh:103
G4QMDParticipant * EraseParticipant(G4int i)
Definition: G4QMDSystem.hh:56
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
TCanvas * c2
Definition: plot_hist.C:75
void setZ(double)
#define G4UniformRand()
Definition: Randomize.hh:53
void SetPosition(G4ThreeVector r)
G4bool CalFinalStateOfTheBinaryCollisionJQMD(G4double, G4double, G4ThreeVector, G4double, G4double, G4ThreeVector, G4double, G4int, G4int)
Hep3Vector v() const
G4double G4ParticleHPJENDLHEData::G4double result
TTree * t2
Definition: plottest35.C:36
void SetParticipant(G4QMDParticipant *particle)
Definition: G4QMDSystem.hh:51
G4ThreeVector GetMomentum()
void InsertParticipant(G4QMDParticipant *particle, G4int j)
Definition: G4QMDSystem.cc:110
double mag() const
int G4int
Definition: G4Types.hh:78
G4bool CalFinalStateOfTheBinaryCollision(G4int, G4int)
G4GLOB_DLL std::ostream G4cout
double x() const
G4QMDMeanField * theMeanField
G4QMDSystem * theSystem
Hep3Vector vect() const
virtual G4KineticTrackVector * Scatter(const G4KineticTrack &trk1, const G4KineticTrack &trk2) const
Definition: G4Scatterer.cc:284
Char_t n[5]
void IncrementCollisionCounter()
Definition: G4QMDSystem.hh:64
static constexpr double pi
Definition: G4SIunits.hh:75
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
void Cal2BodyQuantities()
double y() const
G4bool IsPauliBlocked(G4int)
void DeleteParticipant(G4int i)
Definition: G4QMDSystem.hh:57
G4ThreeVector GetPosition()
static constexpr double GeV
Definition: G4SIunits.hh:217
void setY(double)
G4KineticTrackVector * Decay()
HepLorentzVector & boost(double, double, double)