Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4INCLCascade.hh
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
38 #ifndef G4INCLCascade_hh
39 #define G4INCLCascade_hh 1
40 
41 #include "G4INCLParticle.hh"
42 #include "G4INCLNucleus.hh"
44 #include "G4INCLCascadeAction.hh"
45 #include "G4INCLEventInfo.hh"
46 #include "G4INCLGlobalInfo.hh"
47 #include "G4INCLLogger.hh"
48 #include "G4INCLConfig.hh"
49 #include "G4INCLRootFinder.hh"
50 
51 namespace G4INCL {
52  class INCL {
53  public:
54  INCL(Config const * const config);
55 
56  ~INCL();
57 
59  INCL(const INCL &rhs);
60 
62  INCL &operator=(const INCL &rhs);
63 
64  G4bool prepareReaction(const ParticleSpecies &projectileSpecies, const G4double kineticEnergy, const G4int A, const G4int Z, const G4int S);
65  G4bool initializeTarget(const G4int A, const G4int Z, const G4int S);
66  inline const EventInfo &processEvent() {
67  return processEvent(
73  );
74  }
75  const EventInfo &processEvent(
76  ParticleSpecies const &projectileSpecies,
77  const G4double kineticEnergy,
78  const G4int targetA,
79  const G4int targetZ,
80  const G4int targetS
81  );
82 
83  void finalizeGlobalInfo(Random::SeedVector const &initialSeeds);
84  const GlobalInfo &getGlobalInfo() const { return theGlobalInfo; }
85 
86 
87  private:
96  Config const * const theConfig;
99 
102 
105 
107  class RecoilFunctor : public RootFunctor {
108  public:
113  RecoilFunctor(Nucleus * const n, const EventInfo &ei) :
114  RootFunctor(0., 1E6),
115  nucleus(n),
116  outgoingParticles(n->getStore()->getOutgoingParticles()),
117  theEventInfo(ei) {
118  for(ParticleIter p=outgoingParticles.begin(), e=outgoingParticles.end(); p!=e; ++p) {
119  particleMomenta.push_back((*p)->getMomentum());
120  particleKineticEnergies.push_back((*p)->getKineticEnergy());
121  }
122  ProjectileRemnant * const aPR = n->getProjectileRemnant();
123  if(aPR && aPR->getA()>0) {
124  particleMomenta.push_back(aPR->getMomentum());
125  particleKineticEnergies.push_back(aPR->getKineticEnergy());
126  outgoingParticles.push_back(aPR);
127  }
128  }
129  virtual ~RecoilFunctor() {}
130 
136  G4double operator()(const G4double x) const {
139  }
140 
142  void cleanUp(const G4bool success) const {
143  if(!success)
145  }
146 
147  private:
152  // \brief Reference to the EventInfo object
155  std::list<ThreeVector> particleMomenta;
157  std::list<G4double> particleKineticEnergies;
158 
163  void scaleParticleEnergies(const G4double rescale) const {
164  // Rescale the energies (and the momenta) of the outgoing particles.
166  std::list<ThreeVector>::const_iterator iP = particleMomenta.begin();
167  std::list<G4double>::const_iterator iE = particleKineticEnergies.begin();
168  for( ParticleIter i = outgoingParticles.begin(), e = outgoingParticles.end(); i!=e; ++i, ++iP, ++iE)
169  {
170  const G4double mass = (*i)->getMass();
171  const G4double newKineticEnergy = (*iE) * rescale;
172 
173  (*i)->setMomentum(*iP);
174  (*i)->setEnergy(mass + newKineticEnergy);
175  (*i)->adjustMomentumFromEnergy();
176 
177  pBalance -= (*i)->getMomentum();
178  }
179 
180  nucleus->setMomentum(pBalance);
182  const G4double pRem2 = pBalance.mag2();
183  const G4double recoilEnergy = pRem2/
184  (std::sqrt(pRem2+remnantMass*remnantMass) + remnantMass);
185  nucleus->setEnergy(remnantMass + recoilEnergy);
186  }
187  };
188 
190  class RecoilCMFunctor : public RootFunctor {
191  public:
196  RecoilCMFunctor(Nucleus * const n, const EventInfo &ei) :
197  RootFunctor(0., 1E6),
198  nucleus(n),
199  theIncomingMomentum(nucleus->getIncomingMomentum()),
200  outgoingParticles(n->getStore()->getOutgoingParticles()),
201  theEventInfo(ei) {
203  for(ParticleIter p=outgoingParticles.begin(), e=outgoingParticles.end(); p!=e; ++p) {
204  (*p)->boost(thePTBoostVector);
205  particleCMMomenta.push_back((*p)->getMomentum());
206  }
207  ProjectileRemnant * const aPR = n->getProjectileRemnant();
208  if(aPR && aPR->getA()>0) {
209  aPR->boost(thePTBoostVector);
210  particleCMMomenta.push_back(aPR->getMomentum());
211  outgoingParticles.push_back(aPR);
212  }
213  }
214  virtual ~RecoilCMFunctor() {}
215 
221  G4double operator()(const G4double x) const {
224  }
225 
227  void cleanUp(const G4bool success) const {
228  if(!success)
230  }
231 
232  private:
241  // \brief Reference to the EventInfo object
244  std::list<ThreeVector> particleCMMomenta;
245 
250  void scaleParticleCMMomenta(const G4double rescale) const {
251  // Rescale the CM momenta of the outgoing particles.
252  ThreeVector remnantMomentum = theIncomingMomentum;
253  std::list<ThreeVector>::const_iterator iP = particleCMMomenta.begin();
254  for( ParticleIter i = outgoingParticles.begin(), e = outgoingParticles.end(); i!=e; ++i, ++iP)
255  {
256  (*i)->setMomentum(*iP * rescale);
257  (*i)->adjustEnergyFromMomentum();
258  (*i)->boost(-thePTBoostVector);
259 
260  remnantMomentum -= (*i)->getMomentum();
261  }
262 
263  nucleus->setMomentum(remnantMomentum);
265  const G4double pRem2 = remnantMomentum.mag2();
266  const G4double recoilEnergy = pRem2/
267  (std::sqrt(pRem2+remnantMass*remnantMass) + remnantMass);
268  nucleus->setEnergy(remnantMass + recoilEnergy);
269  }
270  };
271 
278 
279 #ifndef INCLXX_IN_GEANT4_MODE
280 
289  void globalConservationChecks(G4bool afterRecoil);
290 #endif
291 
298 
317 
325  void makeCompoundNucleus();
326 
328  G4bool preCascade(ParticleSpecies const &projectileSpecies, const G4double kineticEnergy);
329 
331  void cascade();
332 
334  void postCascade();
335 
340  void initMaxInteractionDistance(ParticleSpecies const &p, const G4double kineticEnergy);
341 
347  void initUniverseRadius(ParticleSpecies const &p, const G4double kineticEnergy, const G4int A, const G4int Z);
348 
350  void updateGlobalInfo();
351  };
352 }
353 
354 #endif
Float_t x
Definition: compare.C:6
EventInfo const & theEventInfo
void scaleParticleCMMomenta(const G4double rescale) const
Scale the kinetic energies of the outgoing particles.
void finalizeGlobalInfo(Random::SeedVector const &initialSeeds)
ParticleList::const_iterator ParticleIter
Nucleus * nucleus
Pointer to the nucleus.
G4double getProjectileKineticEnergy() const
Get the projectile kinetic energy.
G4int minRemnantSize
Remnant size below which cascade stops.
void boost(const ThreeVector &aBoostVector)
Boost the cluster with the indicated velocity.
Nucleus * nucleus
Pointer to the nucleus.
Static root-finder algorithm.
G4bool preCascade(ParticleSpecies const &projectileSpecies, const G4double kineticEnergy)
Initialise the cascade.
G4double operator()(const G4double x) const
Compute the energy-conservation violation.
Nucleus * nucleus
G4double getKineticEnergy() const
Get the particle kinetic energy.
CascadeAction * cascadeAction
INCL(Config const *const config)
void initUniverseRadius(ParticleSpecies const &p, const G4double kineticEnergy, const G4int A, const G4int Z)
Initialize the universe radius.
const G4INCL::ThreeVector & getMomentum() const
void makeCompoundNucleus()
Make a compound nucleus.
RecoilFunctor(Nucleus *const n, const EventInfo &ei)
Prepare for calling the () operator and scaleParticleEnergies.
ParticleList outgoingParticles
List of final-state particles.
G4bool prepareReaction(const ParticleSpecies &projectileSpecies, const G4double kineticEnergy, const G4int A, const G4int Z, const G4int S)
void cleanUp(const G4bool success) const
Clean up after root finding.
const char * p
Definition: xmltok.h:285
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
std::list< G4double > particleKineticEnergies
Initial kinetic energies of the outgoing particles.
Class to adjust remnant recoil.
G4double fixedImpactParameter
G4bool forceTransparent
G4int getTargetZ() const
Get the target charge number.
Definition: G4INCLConfig.hh:97
void rescaleOutgoingForRecoil()
Rescale the energies of the outgoing particles.
G4double maxInteractionDistance
double S(double temp)
const GlobalInfo & getGlobalInfo() const
void scaleParticleEnergies(const G4double rescale) const
Scale the kinetic energies of the outgoing particles.
Float_t Z
G4int getTargetA() const
Get the target mass number.
Definition: G4INCLConfig.hh:94
INCL & operator=(const INCL &rhs)
Dummy assignment operator to silence Coverity warning.
Config const *const theConfig
ParticleSpecies getProjectileSpecies() const
Get the projectile species.
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
G4bool targetInitSuccess
void cascade()
The actual cascade loop.
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
G4int makeProjectileRemnant()
Make a projectile pre-fragment out of geometrical spectators.
Class to adjust remnant recoil in the reaction CM system.
double A(double temperature)
G4int getZ() const
Returns the charge number.
G4int getA() const
Returns the baryon number.
Simple container for output of event results.
ParticleList outgoingParticles
List of final-state particles.
const ThreeVector & getIncomingMomentum() const
Get the incoming momentum vector.
Simple container for output of calculation-wide results.
const EventInfo & processEvent()
void initMaxInteractionDistance(ParticleSpecies const &p, const G4double kineticEnergy)
Initialise the maximum interaction distance.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
IPropagationModel * propagationModel
void updateGlobalInfo()
Update global counters and other members of theGlobalInfo object.
std::list< ThreeVector > particleMomenta
Initial momenta of the outgoing particles.
int G4int
Definition: G4Types.hh:78
G4int getTargetS() const
Get the target strangess number.
ThreeVector theIncomingMomentum
Incoming momentum.
GlobalInfo theGlobalInfo
G4double mag2() const
void postCascade()
Finalise the cascade and clean up.
void setEnergy(G4double energy)
G4double getInitialEnergy() const
Get the initial energy.
Class containing default actions to be performed at intermediate cascade steps.
ThreeVector thePTBoostVector
Projectile-target CM boost vector.
Char_t n[5]
RecoilCMFunctor(Nucleus *const n, const EventInfo &ei)
Prepare for calling the () operator and scaleParticleEnergies.
EventInfo const & theEventInfo
void cleanUp(const G4bool success) const
Clean up after root finding.
G4double getExcitationEnergy() const
Get the excitation energy of the nucleus.
G4double maxImpactParameter
G4double maxUniverseRadius
std::list< ThreeVector > particleCMMomenta
Initial CM momenta of the outgoing particles.
G4bool continueCascade()
Stopping criterion for the cascade.
EventInfo theEventInfo
ConservationBalance getConservationBalance(EventInfo const &theEventInfo, const G4bool afterRecoil) const
Compute charge, mass, energy and momentum balance.
G4bool initializeTarget(const G4int A, const G4int Z, const G4int S)
G4double operator()(const G4double x) const
Compute the energy-conservation violation.