Geant4
v4-10.4-release
메인 페이지
관련된 페이지
모듈
네임스페이스
클래스
파일들
파일 목록
파일 멤버
모두
클래스
네임스페이스들
파일들
함수
변수
타입정의
열거형 타입
열거형 멤버
Friends
매크로
그룹들
페이지들
source
processes
hadronic
models
inclxx
incl_physics
src
G4INCLNNToNSK2piChannel.cc
이 파일의 문서화 페이지로 가기
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
// INCL++ intra-nuclear cascade model
27
// Alain Boudard, CEA-Saclay, France
28
// Joseph Cugnon, University of Liege, Belgium
29
// Jean-Christophe David, CEA-Saclay, France
30
// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31
// Sylvie Leray, CEA-Saclay, France
32
// Davide Mancusi, CEA-Saclay, France
33
//
34
#define INCLXX_IN_GEANT4_MODE 1
35
36
#include "
globals.hh
"
37
38
#include "
G4INCLNNToNSK2piChannel.hh
"
39
#include "
G4INCLKinematicsUtils.hh
"
40
#include "
G4INCLBinaryCollisionAvatar.hh
"
41
#include "
G4INCLRandom.hh
"
42
#include "
G4INCLGlobals.hh
"
43
#include "
G4INCLLogger.hh
"
44
#include <algorithm>
45
#include "
G4INCLPhaseSpaceGenerator.hh
"
46
47
namespace
G4INCL {
48
49
const
G4double
NNToNSK2piChannel::angularSlope
= 2.;
// What is the exact effect? Sould be check
50
51
NNToNSK2piChannel::NNToNSK2piChannel
(
Particle
*p1,
Particle
*p2)
52
: particle1(p1), particle2(p2)
53
{}
54
55
NNToNSK2piChannel::~NNToNSK2piChannel
(){}
56
57
void
NNToNSK2piChannel::fillFinalState
(
FinalState
*fs) {
58
59
/* Equipartition in all channel with factor N(pi)!
60
*/
61
62
const
G4double
sqrtS =
KinematicsUtils::totalEnergyInCM
(
particle1
,
particle2
);
63
64
const
G4int
iso =
ParticleTable::getIsospin
(
particle1
->
getType
()) +
ParticleTable::getIsospin
(
particle2
->
getType
());
65
66
ParticleType
KaonType;
67
ParticleType
Pion1Type;
68
ParticleType
Pion2Type;
69
70
G4double
rdm =
Random::shoot
();
71
72
if
(iso == 2){
73
if
(rdm*20. < 1.){
74
particle1
->
setType
(
Neutron
);
75
particle2
->
setType
(
SigmaPlus
);
76
KaonType =
KZero
;
77
Pion1Type =
PiZero
;
78
Pion2Type =
PiPlus
;
79
}
80
else
if
(rdm*20. < 3.){
81
particle1
->
setType
(
Neutron
);
82
particle2
->
setType
(
SigmaZero
);
83
KaonType =
KZero
;
84
Pion1Type =
PiPlus
;
85
Pion2Type =
PiPlus
;
86
}
87
else
if
(rdm*20. < 4.){
88
particle1
->
setType
(
Neutron
);
89
particle2
->
setType
(
SigmaPlus
);
90
KaonType =
KPlus
;
91
Pion1Type =
PiMinus
;
92
Pion2Type =
PiPlus
;
93
}
94
else
if
(rdm*20. < 6.){
95
particle1
->
setType
(
Neutron
);
96
particle2
->
setType
(
SigmaPlus
);
97
KaonType =
KPlus
;
98
Pion1Type =
PiZero
;
99
Pion2Type =
PiZero
;
100
}
101
else
if
(rdm*20. < 7.){
102
particle1
->
setType
(
Neutron
);
103
particle2
->
setType
(
SigmaZero
);
104
KaonType =
KPlus
;
105
Pion1Type =
PiZero
;
106
Pion2Type =
PiPlus
;
107
}
108
else
if
(rdm*20. < 9.){
109
particle1
->
setType
(
Neutron
);
110
particle2
->
setType
(
SigmaMinus
);
111
KaonType =
KPlus
;
112
Pion1Type =
PiPlus
;
113
Pion2Type =
PiPlus
;
114
}
115
else
if
(rdm*20. < 10.){
116
particle1
->
setType
(
Proton
);
117
particle2
->
setType
(
SigmaPlus
);
118
KaonType =
KZero
;
119
Pion1Type =
PiMinus
;
120
Pion2Type =
PiPlus
;
121
}
122
else
if
(rdm*20. < 12.){
123
particle1
->
setType
(
Proton
);
124
particle2
->
setType
(
SigmaPlus
);
125
KaonType =
KZero
;
126
Pion1Type =
PiZero
;
127
Pion2Type =
PiZero
;
128
}
129
else
if
(rdm*20. < 13.){
130
particle1
->
setType
(
Proton
);
131
particle2
->
setType
(
SigmaZero
);
132
KaonType =
KZero
;
133
Pion1Type =
PiZero
;
134
Pion2Type =
PiPlus
;
135
}
136
else
if
(rdm*20. < 15.){
137
particle1
->
setType
(
Proton
);
138
particle2
->
setType
(
SigmaMinus
);
139
KaonType =
KZero
;
140
Pion1Type =
PiPlus
;
141
Pion2Type =
PiPlus
;
142
}
143
else
if
(rdm*20. < 16.){
144
particle1
->
setType
(
Proton
);
145
particle2
->
setType
(
SigmaPlus
);
146
KaonType =
KPlus
;
147
Pion1Type =
PiMinus
;
148
Pion2Type =
PiZero
;
149
}
150
else
if
(rdm*20. < 17.){
151
particle1
->
setType
(
Proton
);
152
particle2
->
setType
(
SigmaZero
);
153
KaonType =
KPlus
;
154
Pion1Type =
PiMinus
;
155
Pion2Type =
PiPlus
;
156
}
157
else
if
(rdm*20. < 19.){
158
particle1
->
setType
(
Proton
);
159
particle2
->
setType
(
SigmaZero
);
160
KaonType =
KPlus
;
161
Pion1Type =
PiZero
;
162
Pion2Type =
PiZero
;
163
}
164
else
{
165
particle1
->
setType
(
Proton
);
166
particle2
->
setType
(
SigmaMinus
);
167
KaonType =
KPlus
;
168
Pion1Type =
PiZero
;
169
Pion2Type =
PiPlus
;
170
}
171
172
173
}
if
(iso == -2){
174
if
(rdm*20. < 1.){
175
particle1
->
setType
(
Neutron
);
176
particle2
->
setType
(
SigmaPlus
);
177
KaonType =
KZero
;
178
Pion1Type =
PiMinus
;
179
Pion2Type =
PiZero
;
180
}
181
else
if
(rdm*20. < 2.){
182
particle1
->
setType
(
Neutron
);
183
particle2
->
setType
(
SigmaZero
);
184
KaonType =
KZero
;
185
Pion1Type =
PiMinus
;
186
Pion2Type =
PiPlus
;
187
}
188
else
if
(rdm*20. < 4.){
189
particle1
->
setType
(
Neutron
);
190
particle2
->
setType
(
SigmaZero
);
191
KaonType =
KZero
;
192
Pion1Type =
PiZero
;
193
Pion2Type =
PiZero
;
194
}
195
else
if
(rdm*20. < 5.){
196
particle1
->
setType
(
Neutron
);
197
particle2
->
setType
(
SigmaMinus
);
198
KaonType =
KZero
;
199
Pion1Type =
PiZero
;
200
Pion2Type =
PiPlus
;
201
}
202
else
if
(rdm*20. < 7.){
203
particle1
->
setType
(
Neutron
);
204
particle2
->
setType
(
SigmaPlus
);
205
KaonType =
KPlus
;
206
Pion1Type =
PiMinus
;
207
Pion2Type =
PiMinus
;
208
}
209
else
if
(rdm*20. < 8.){
210
particle1
->
setType
(
Neutron
);
211
particle2
->
setType
(
SigmaZero
);
212
KaonType =
KPlus
;
213
Pion1Type =
PiMinus
;
214
Pion2Type =
PiZero
;
215
}
216
else
if
(rdm*20. < 9.){
217
particle1
->
setType
(
Neutron
);
218
particle2
->
setType
(
SigmaMinus
);
219
KaonType =
KPlus
;
220
Pion1Type =
PiMinus
;
221
Pion2Type =
PiPlus
;
222
}
223
else
if
(rdm*20. < 11.){
224
particle1
->
setType
(
Neutron
);
225
particle2
->
setType
(
SigmaMinus
);
226
KaonType =
KPlus
;
227
Pion1Type =
PiZero
;
228
Pion2Type =
PiZero
;
229
}
230
else
if
(rdm*20. < 13.){
231
particle1
->
setType
(
Proton
);
232
particle2
->
setType
(
SigmaPlus
);
233
KaonType =
KZero
;
234
Pion1Type =
PiMinus
;
235
Pion2Type =
PiMinus
;
236
}
237
else
if
(rdm*20. < 14.){
238
particle1
->
setType
(
Proton
);
239
particle2
->
setType
(
SigmaZero
);
240
KaonType =
KZero
;
241
Pion1Type =
PiMinus
;
242
Pion2Type =
PiZero
;
243
}
244
else
if
(rdm*20. < 15.){
245
particle1
->
setType
(
Proton
);
246
particle2
->
setType
(
SigmaMinus
);
247
KaonType =
KZero
;
248
Pion1Type =
PiMinus
;
249
Pion2Type =
PiPlus
;
250
}
251
else
if
(rdm*20. < 17.){
252
particle1
->
setType
(
Proton
);
253
particle2
->
setType
(
SigmaMinus
);
254
KaonType =
KZero
;
255
Pion1Type =
PiZero
;
256
Pion2Type =
PiZero
;
257
}
258
else
if
(rdm*20. < 19.){
259
particle1
->
setType
(
Proton
);
260
particle2
->
setType
(
SigmaZero
);
261
KaonType =
KPlus
;
262
Pion1Type =
PiMinus
;
263
Pion2Type =
PiMinus
;
264
}
265
else
{
266
particle1
->
setType
(
Proton
);
267
particle2
->
setType
(
SigmaMinus
);
268
KaonType =
KPlus
;
269
Pion1Type =
PiMinus
;
270
Pion2Type =
PiZero
;
271
}
272
273
}
274
else
{
275
if
(rdm*22. < 1.){
276
particle1
->
setType
(
Neutron
);
277
particle2
->
setType
(
SigmaPlus
);
278
KaonType =
KZero
;
279
Pion1Type =
PiMinus
;
280
Pion2Type =
PiPlus
;
281
}
282
else
if
(rdm*22. < 3.){
283
particle1
->
setType
(
Neutron
);
284
particle2
->
setType
(
SigmaPlus
);
285
KaonType =
KZero
;
286
Pion1Type =
PiZero
;
287
Pion2Type =
PiZero
;
288
}
289
else
if
(rdm*22. < 4.){
290
particle1
->
setType
(
Neutron
);
291
particle2
->
setType
(
SigmaZero
);
292
KaonType =
KZero
;
293
Pion1Type =
PiZero
;
294
Pion2Type =
PiPlus
;
295
}
296
else
if
(rdm*22. < 6.){
297
particle1
->
setType
(
Neutron
);
298
particle2
->
setType
(
SigmaMinus
);
299
KaonType =
KZero
;
300
Pion1Type =
PiPlus
;
301
Pion2Type =
PiPlus
;
302
}
303
else
if
(rdm*22. < 7.){
304
particle1
->
setType
(
Neutron
);
305
particle2
->
setType
(
SigmaPlus
);
306
KaonType =
KPlus
;
307
Pion1Type =
PiMinus
;
308
Pion2Type =
PiZero
;
309
}
310
else
if
(rdm*22. < 8.){
311
particle1
->
setType
(
Neutron
);
312
particle2
->
setType
(
SigmaZero
);
313
KaonType =
KPlus
;
314
Pion1Type =
PiMinus
;
315
Pion2Type =
PiPlus
;
316
}
317
else
if
(rdm*22. < 10.){
318
particle1
->
setType
(
Neutron
);
319
particle2
->
setType
(
SigmaZero
);
320
KaonType =
KPlus
;
321
Pion1Type =
PiZero
;
322
Pion2Type =
PiZero
;
323
}
324
else
if
(rdm*22. < 11.){
325
particle1
->
setType
(
Neutron
);
326
particle2
->
setType
(
SigmaMinus
);
327
KaonType =
KPlus
;
328
Pion1Type =
PiZero
;
329
Pion2Type =
PiPlus
;
330
}
331
else
if
(rdm*22. < 12.){
332
particle1
->
setType
(
Proton
);
333
particle2
->
setType
(
SigmaPlus
);
334
KaonType =
KZero
;
335
Pion1Type =
PiMinus
;
336
Pion2Type =
PiZero
;
337
}
338
else
if
(rdm*22. < 13.){
339
particle1
->
setType
(
Proton
);
340
particle2
->
setType
(
SigmaZero
);
341
KaonType =
KZero
;
342
Pion1Type =
PiMinus
;
343
Pion2Type =
PiPlus
;
344
}
345
else
if
(rdm*22. < 15.){
346
particle1
->
setType
(
Proton
);
347
particle2
->
setType
(
SigmaZero
);
348
KaonType =
KZero
;
349
Pion1Type =
PiZero
;
350
Pion2Type =
PiZero
;
351
}
352
else
if
(rdm*22. < 16.){
353
particle1
->
setType
(
Proton
);
354
particle2
->
setType
(
SigmaMinus
);
355
KaonType =
KZero
;
356
Pion1Type =
PiZero
;
357
Pion2Type =
PiPlus
;
358
}
359
else
if
(rdm*22. < 18.){
360
particle1
->
setType
(
Proton
);
361
particle2
->
setType
(
SigmaPlus
);
362
KaonType =
KPlus
;
363
Pion1Type =
PiMinus
;
364
Pion2Type =
PiMinus
;
365
}
366
else
if
(rdm*22. < 19.){
367
particle1
->
setType
(
Proton
);
368
particle2
->
setType
(
SigmaZero
);
369
KaonType =
KPlus
;
370
Pion1Type =
PiMinus
;
371
Pion2Type =
PiZero
;
372
}
373
else
if
(rdm*22. < 20.){
374
particle1
->
setType
(
Proton
);
375
particle2
->
setType
(
SigmaMinus
);
376
KaonType =
KPlus
;
377
Pion1Type =
PiMinus
;
378
Pion2Type =
PiPlus
;
379
}
380
else
{
381
particle1
->
setType
(
Proton
);
382
particle2
->
setType
(
SigmaMinus
);
383
KaonType =
KPlus
;
384
Pion1Type =
PiZero
;
385
Pion2Type =
PiZero
;
386
}
387
388
}
389
390
391
ParticleList
list;
392
list.push_back(
particle1
);
393
list.push_back(
particle2
);
394
const
ThreeVector
&rcol1 =
particle1
->
getPosition
();
395
const
ThreeVector
&rcol2 =
particle2
->
getPosition
();
396
const
ThreeVector
zero;
397
Particle
*pion1 =
new
Particle
(Pion1Type,zero,rcol1);
398
Particle
*pion2 =
new
Particle
(Pion2Type,zero,rcol1);
399
Particle
*kaon =
new
Particle
(KaonType,zero,rcol2);
400
list.push_back(kaon);
401
list.push_back(pion1);
402
list.push_back(pion2);
403
404
PhaseSpaceGenerator::generateBiased
(sqrtS, list, 0,
angularSlope
);
405
406
INCL_DEBUG
(
"NNToNSK2pi "
<< (kaon->
getMomentum
().
theta
()) * 180. /
G4INCL::Math::pi
<<
'\n'
);
407
408
fs->
addModifiedParticle
(
particle1
);
409
fs->
addModifiedParticle
(
particle2
);
410
fs->
addCreatedParticle
(kaon);
411
fs->
addCreatedParticle
(pion1);
412
fs->
addCreatedParticle
(pion2);
413
414
}
415
}
G4INCL::PhaseSpaceGenerator::generateBiased
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
Definition:
G4INCLPhaseSpaceGenerator.cc:97
G4INCL::FinalState::addModifiedParticle
void addModifiedParticle(Particle *p)
Definition:
G4INCLFinalState.cc:60
G4INCLBinaryCollisionAvatar.hh
G4INCL::Particle::getPosition
const G4INCL::ThreeVector & getPosition() const
Definition:
G4INCLParticle.hh:726
G4INCLPhaseSpaceGenerator.hh
G4INCL::Neutron
Definition:
G4INCLParticleType.hh:52
G4INCL::KinematicsUtils::totalEnergyInCM
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
Definition:
G4INCLKinematicsUtils.cc:94
G4INCL::Particle::getMomentum
const G4INCL::ThreeVector & getMomentum() const
Definition:
G4INCLParticle.hh:704
G4INCL::KZero
Definition:
G4INCLParticleType.hh:70
G4INCL::Proton
Definition:
G4INCLParticleType.hh:51
G4INCLNNToNSK2piChannel.hh
G4INCL::NNToNSK2piChannel::~NNToNSK2piChannel
virtual ~NNToNSK2piChannel()
Definition:
G4INCLNNToNSK2piChannel.cc:55
G4INCL::ParticleList
Definition:
G4INCLParticle.hh:62
G4INCL::KPlus
Definition:
G4INCLParticleType.hh:69
G4INCLRandom.hh
INCL_DEBUG
#define INCL_DEBUG(x)
Definition:
G4INCLLogger.hh:240
G4INCL::PiMinus
Definition:
G4INCLParticleType.hh:54
G4double
double G4double
Definition:
G4Types.hh:76
G4INCL::SigmaMinus
Definition:
G4INCLParticleType.hh:68
G4INCL::PiZero
Definition:
G4INCLParticleType.hh:55
G4INCL::Random::shoot
G4double shoot()
Definition:
G4INCLRandom.cc:93
G4INCL::FinalState
Definition:
G4INCLFinalState.hh:64
G4INCL::ThreeVector
Definition:
G4INCLThreeVector.hh:54
G4INCL::Math::pi
const G4double pi
Definition:
G4INCLGlobals.hh:68
G4INCL::NNToNSK2piChannel::particle2
Particle * particle2
Definition:
G4INCLNNToNSK2piChannel.hh:55
G4INCLKinematicsUtils.hh
globals.hh
G4INCL::Particle::setType
void setType(ParticleType t)
Definition:
G4INCLParticle.hh:180
G4INCL::PiPlus
Definition:
G4INCLParticleType.hh:53
G4INCLGlobals.hh
G4int
int G4int
Definition:
G4Types.hh:78
G4INCL::Particle
Definition:
G4INCLParticle.hh:75
G4INCL::ParticleTable::getIsospin
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
Definition:
G4INCLParticleTable.cc:471
G4INCL::Particle::getType
G4INCL::ParticleType getType() const
Definition:
G4INCLParticle.hh:171
G4INCL::SigmaPlus
Definition:
G4INCLParticleType.hh:66
G4INCL::NNToNSK2piChannel::fillFinalState
void fillFinalState(FinalState *fs)
Definition:
G4INCLNNToNSK2piChannel.cc:57
G4INCL::SigmaZero
Definition:
G4INCLParticleType.hh:67
G4INCL::NNToNSK2piChannel::NNToNSK2piChannel
NNToNSK2piChannel(Particle *, Particle *)
Definition:
G4INCLNNToNSK2piChannel.cc:51
G4INCL::ThreeVector::theta
G4double theta() const
Definition:
G4INCLThreeVector.hh:83
G4INCL::ParticleType
ParticleType
Definition:
G4INCLParticleType.hh:50
G4INCL::FinalState::addCreatedParticle
void addCreatedParticle(Particle *p)
Definition:
G4INCLFinalState.cc:75
G4INCL::NNToNSK2piChannel::angularSlope
static const G4double angularSlope
Definition:
G4INCLNNToNSK2piChannel.hh:57
G4INCL::NNToNSK2piChannel::particle1
Particle * particle1
Definition:
G4INCLNNToNSK2piChannel.hh:55
G4INCLLogger.hh
다음에 의해 생성됨 :
1.8.5