Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4INCLEtaNToPiNChannel.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
39 #include "G4INCLKinematicsUtils.hh"
41 #include "G4INCLRandom.hh"
42 #include "G4INCLGlobals.hh"
43 #include "G4INCLLogger.hh"
44 
45 namespace G4INCL {
46 
48  : particle1(p1), particle2(p2)
49  {
50 
51  }
52 
54 
55  }
56 
58  Particle * nucleon;
59  Particle * eta;
60  if(particle1->isNucleon()) {
61  nucleon = particle1;
62  eta = particle2;
63  } else {
64  nucleon = particle2;
65  eta = particle1;
66  }
67 
69 
70  const G4double r2 = Random::shoot();
71  if (nucleon->getType() == Neutron) {
72  if (r2*3. < 2.) {
73  nucleon->setType(Proton);
74  eta->setType(PiMinus);
75  }
76  else {
77  nucleon->setType(Neutron);
78  eta->setType(PiZero);
79  }
80  }
81  else {
82  if (r2*3. < 2.) {
83  nucleon->setType(Neutron);
84  eta->setType(PiPlus);
85  }
86  else {
87  nucleon->setType(Proton);
88  eta->setType(PiZero);
89  }
90  }
91 
92  G4double sh=nucleon->getEnergy()+eta->getEnergy();
93  G4double mn=nucleon->getMass();
94  G4double me=eta->getMass();
95  G4double en=(sh*sh+mn*mn-me*me)/(2*sh);
96  nucleon->setEnergy(en);
97  G4double ee=std::sqrt(en*en-mn*mn+me*me);
98  eta->setEnergy(ee);
99  G4double pn=std::sqrt(en*en-mn*mn);
100 
101  const G4double pi=std::acos(-1.0);
102  G4double x1;
103  G4double u1;
104  G4double fteta;
105  G4double teta;
106  G4double fi;
107 
108  G4double a0;
109  G4double a1;
110  G4double a2;
111  G4double a3;
112  G4double a4;
113  G4double a5;
114  G4double a6;
115 
116  if (plab > 1400.) plab=1400.; // no information on angular distributions above plab=1400 MeV
117  G4double p6=std::pow(plab, 6);
118  G4double p5=std::pow(plab, 5);
119  G4double p4=std::pow(plab, 4);
120  G4double p3=std::pow(plab, 3);
121  G4double p2=std::pow(plab, 2);
122  G4double p1=plab;
123 
124  // a6
125  if (plab <= 600.) {
126  a6=5.721872E-18*p6 - 1.063594E-14*p5 +
127  7.812226E-12*p4 - 2.947343E-09*p3 +
128  5.955500E-07*p2 - 6.081534E-05*p1 + 2.418893E-03;
129  }
130  else {
131  a6=1.549323E-18*p6 - 9.570613E-15*p5 +
132  2.428560E-11*p4 - 3.237490E-08*p3 +
133  2.385312E-05*p2 - 9.167580E-03*p1 + 1.426952E+00;
134  }
135  // a5
136  if (plab <= 700.) {
137  a5=-3.858406E-16*p6 + 7.397533E-13*p5 -
138  5.344420E-10*p4 + 1.865842E-07*p3 -
139  3.234292E-05*p2 + 2.552380E-03*p1 - 6.810842E-02;
140  }
141  else {
142  a5=-3.775268E-17*p6 + 2.445059E-13*p5 -
143  6.503137E-10*p4 + 9.065678E-07*p3 -
144  6.953576E-04*p2 + 2.757524E-01*p1 - 4.328028E+01;
145  }
146  // a4
147  if (plab <= 550.) {
148  a4=-2.051840E-16*p6 + 3.858551E-13*p5 -
149  3.166229E-10*p4 + 1.353545E-07*p3 -
150  2.631251E-05*p2 + 2.109593E-03*p1 - 5.633076E-02;
151  }
152  else if (plab <= 650.) {
153  a4=-1.698136E-05*p2 + 1.827203E-02*p1 - 4.482122E+00;
154  }
155  else {
156  a4=-2.808337E-17*p6 + 1.640033E-13*p5 -
157  3.820460E-10*p4 + 4.452787E-07*p3 -
158  2.621981E-04*p2 + 6.530743E-02*p1 - 2.447717E+00;
159  }
160  // a3
161  if (plab <= 700.) {
162  a3=7.061866E-16*p6 - 1.356389E-12*p5 +
163  9.783322E-10*p4 - 3.407333E-07*p3 +
164  5.903545E-05*p2 - 4.735559E-03*p1 + 1.270435E-01;
165  }
166  else {
167  a3=1.138088E-16*p6 - 7.459580E-13*p5 +
168  2.015156E-09*p4 - 2.867416E-06*p3 +
169  2.261028E-03*p2 - 9.323442E-01*p1 + 1.552846E+02;
170  }
171  // a2
172  if (plab <= 550.) {
173  a2=1.352952E-17*p6 - 3.030435E-13*p5 +
174  4.624668E-10*p4 - 2.759605E-07*p3 +
175  6.996373E-05*p2 - 4.745692E-03*p1 + 1.524349E-01;
176  }
177  else if (plab <= 700.) {
178  a2=5.514651E-08*p3 - 8.734112E-05*p2 + 4.108704E-02*p1 - 5.116601E+00;
179  }
180  else {
181  a2=5.621795E-17*p6 - 3.701960E-13*p5 +
182  1.005796E-09*p4 - 1.441294E-06*p3 +
183  1.146234E-03*p2 - 4.775194E-01*p1 + 8.084776E+01;
184  }
185  // a1
186  if (plab <= 500.) {
187  a1=-2.425827E-16*p6 + 4.113350E-13*p5 -
188  2.342298E-10*p4 + 4.934322E-08*p3 -
189  3.564530E-06*p2 + 6.516398E-04*p1 + 2.547230E-01;
190  }
191  else if (plab <= 700.) {
192  a1=-1.824213E-10*p4 + 3.599251E-07*p3 -
193  2.480862E-04*p2 + 6.894931E-02*p1 - 5.760562E+00;
194  }
195  else {
196  a1=-5.139366E-17*p6 + 3.408224E-13*p5 -
197  9.341903E-10*p4 + 1.354028E-06*p3 -
198  1.093509E-03*p2 + 4.653326E-01*p1 - 8.068436E+01;
199  }
200  // a0
201  if (plab <= 400.) {
202  a0=1.160837E-13*p6 - 1.813002E-10*p5 +
203  1.155391E-07*p4 - 3.862737E-05*p3 +
204  7.230513E-03*p2 - 7.469799E-01*p1 + 3.830064E+01;
205  }
206  else if (plab <= 700.) {
207  a0=2.267918E-14*p6 - 7.593899E-11*p5 +
208  1.049849E-07*p4 - 7.669301E-05*p3 +
209  3.123846E-02*p2 - 6.737221E+00*p1 + 6.032010E+02;
210  }
211  else {
212  a0=-1.851188E-17*p6 + 1.281122E-13*p5 -
213  3.686161E-10*p4 + 5.644116E-07*p3 -
214  4.845757E-04*p2 + 2.203918E-01*p1 - 4.100383E+01;
215  }
216 
217  G4double interg1=2.*(a6/7. + a4/5. + a2/3. + a0); // (integral to normalize)
218  G4double f1=(a6+a5+a4+a3+a2+a1+a0)/interg1; // (Max normalized)
219 
220  G4int passe1=0;
221  while (passe1==0) {
222  // Sample x from -1 to 1
223  x1=Random::shoot();
224  if (Random::shoot() > 0.5) x1=-x1;
225 
226  // Sample u from 0 to 1
227  u1=Random::shoot();
228  fteta=(a6*x1*x1*x1*x1*x1*x1+a5*x1*x1*x1*x1*x1+a4*x1*x1*x1*x1+a3*x1*x1*x1+a2*x1*x1+a1*x1+a0)/interg1;
229  // The condition
230  if (u1*f1 < fteta) {
231  teta=std::acos(x1);
232  // std::cout << x1 << " " << fteta << " "<< f1/interg1 << " " << u1 << " " << interg1 << std::endl;
233  passe1=1;
234  }
235  }
236 
237  fi=(2.0*pi)*Random::shoot();
238 
239  ThreeVector mom_nucleon(
240  pn*std::sin(teta)*std::cos(fi),
241  pn*std::sin(teta)*std::sin(fi),
242  pn*std::cos(teta)
243  );
244  // end real distribution
245 
246  nucleon->setMomentum(-mom_nucleon);
247  eta->setMomentum(mom_nucleon);
248 
249  fs->addModifiedParticle(nucleon);
250  fs->addModifiedParticle(eta);
251  }
252 
253 }
void addModifiedParticle(Particle *p)
G4double getEnergy() const
EtaNToPiNChannel(Particle *, Particle *)
Float_t x1[n_points_granero]
Definition: compare.C:5
void fillFinalState(FinalState *fs)
G4bool nucleon(G4int ityp)
G4double getMass() const
Get the cached particle mass.
double G4double
Definition: G4Types.hh:76
G4double shoot()
Definition: G4INCLRandom.cc:93
Float_t f1
void setType(ParticleType t)
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
const G4double a0
int G4int
Definition: G4Types.hh:78
G4INCL::ParticleType getType() const
void setEnergy(G4double energy)
static constexpr double pi
Definition: G4SIunits.hh:75
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
G4bool isNucleon() const