Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4EvaporationProbability.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //J.M. Quesada (August2008). Based on:
27 //
28 // Hadronic Process: Nuclear De-excitations
29 // by V. Lara (Oct 1998)
30 //
31 // Modif (03 September 2008) by J. M. Quesada for external choice of inverse
32 // cross section option
33 // JMQ (06 September 2008) Also external choices have been added for
34 // superimposed Coulomb barrier (if useSICB is set true, by default is false)
35 //
36 // JMQ (14 february 2009) bug fixed in emission width: hbarc instead of
37 // hbar_Planck in the denominator
38 //
40 #include "G4NuclearLevelData.hh"
41 #include "G4VCoulombBarrier.hh"
42 #include "G4PhysicalConstants.hh"
43 #include "G4SystemOfUnits.hh"
44 #include "G4PairingCorrection.hh"
45 #include "G4NucleiProperties.hh"
46 #include "G4KalbachCrossSection.hh"
48 #include "Randomize.hh"
49 #include "G4Exp.hh"
50 
51 using namespace std;
52 
54  G4double aGamma,
56  : G4VEmissionProbability(aZ, anA), Gamma(aGamma)
57 {
58  resZ = resA = fragA = fragZ = 0;
59  resA13 = muu = resMass = Mass = U = delta0 = delta1 = a0 = probmax = 0.0;
63 
64  if(0 == theZ) { index = 0; }
65  else if(1 == theZ) { index = theA; }
66  else { index = theA + 1; }
68  if(0 == aZ) {
69  ResetIntegrator(30, 0.25*CLHEP::MeV, 0.02);
70  } else if(1 == aZ && 1 == anA) {
71  ResetIntegrator(20, 0.5*CLHEP::MeV, 0.03);
72  } else {
73  ResetIntegrator(20, CLHEP::MeV, 0.04);
74  }
75 }
76 
78 {}
79 
81  const G4Fragment&, G4double)
82 {
83  return 0.0;
84 }
85 
87  const G4Fragment & fragment, G4double minEnergy, G4double maxEnergy,
88  G4double CoulombBarrier)
89 {
90  fragA = fragment.GetA_asInt();
91  fragZ = fragment.GetZ_asInt();
92  resA = fragA - theA;
93  resZ = fragZ - theZ;
94 
95  G4double fragMass = fragment.GetGroundStateMass();
96  U = fragment.GetExcitationEnergy();
97  Mass = fragMass + U;
101  resA13 = fG4pow->Z13(resA);
103  /*
104  G4cout << "G4EvaporationProbability: Z= " << theZ << " A= " << theA
105  << " resZ= " << resZ << " resA= " << resA
106  << " fragZ= " << fragZ << " fragA= " << fragA
107  << "\n U= " << U << " d0= " << delta0 << " a0= " << a0
108  << " OPT= " << OPTxs << G4endl;
109  */
110  if(U < delta0 || maxEnergy <= minEnergy) { return 0.0; }
111 
112  G4double Width = 0.0;
113  if (OPTxs==0) {
114 
115  G4double SystemEntropy = 2.0*std::sqrt(a0*(U-delta0));
116 
117  static const G4double RN2 =
119 
120  G4double Alpha = CalcAlphaParam(fragment);
121  G4double Beta = CalcBetaParam(fragment);
122 
123  // to be checked where to use a0, where - a1
125  G4double GlobalFactor = Gamma*Alpha*partMass*RN2*resA13*resA13/(a1*a1);
126 
127  G4double maxea = maxEnergy*a1;
128  G4double Term1 = Beta*a1 - 1.5 + maxea;
129  G4double Term2 = (2.0*Beta*a1-3.0)*std::sqrt(maxea) + 2*maxea;
130 
131  static const G4double explim = 350.;
132  G4double ExpTerm1 = (SystemEntropy <= explim) ? G4Exp(-SystemEntropy) : 0.0;
133 
134  G4double ExpTerm2 = 2.*std::sqrt(maxea) - SystemEntropy;
135  ExpTerm2 = std::min(ExpTerm2, explim);
136  ExpTerm2 = G4Exp(ExpTerm2);
137 
138  Width = GlobalFactor*(Term1*ExpTerm1 + Term2*ExpTerm2);
139 
140  } else {
141 
142  // compute power once
143  if(0 < index) {
145  }
146  // if Coulomb barrier cutoff is superimposed for all cross sections
147  // then the limit is the Coulomb Barrier
148  //Width = IntegrateEmissionProbability(minEnergy, maxEnergy,
149  // CoulombBarrier);
150  Width = IntegrateProbability(minEnergy, maxEnergy, CoulombBarrier);
151  }
152  return Width;
153 }
154 
156 {
157  //G4cout << "### G4EvaporationProbability::ProbabilityDistributionFunction"
158  // << G4endl;
159 
160  G4double E0 = U - delta0;
161  //G4double E1 = Mass - partMass - resMass - delta1 - K;
162  G4double E1 = std::sqrt((Mass - partMass)*(Mass - partMass) - 2*Mass*K)
163  - resMass - delta1;
164  /*
165  G4cout << "PDF: FragZ= " << fragZ << " FragA= " << fragA
166  << " Z= " << theZ << " A= " << theA
167  << " K= " << K << " E0= " << E0 << " E1= " << E1 << G4endl;
168  */
169  if(E1 < 0.0) { return 0.0; }
170 
172  G4double Prob = pcoeff*G4Exp(2.0*(std::sqrt(a1*E1) - std::sqrt(a0*E0)))
173  *K*CrossSection(K, cb);
174 
175  //G4cout << "Evap prob: " << Prob << " fVerbose= " << fVerbose << G4endl;
176  return Prob;
177 }
178 
179 G4double
181 {
182  G4double res;
183  if(OPTxs <= 2) {
185  index, theZ, resA);
186  } else {
188  index, theZ, theA, resA);
189  }
190  //G4cout << " K= " << K << " res= " << res << " muu= " << muu << G4endl;
191  return res;
192 }
193 
194 G4double
196  G4double maxKinEnergy,
197  G4double)
198 {
199  /*
200  G4cout << "### Sample probability Emin= " << minKinEnergy
201  << " Emax= " << maxKinEnergy
202  << " Z= " << theZ << " A= " << theA << G4endl;
203  */
204  G4double T = 0.0;
205  CLHEP::HepRandomEngine* rndm = G4Random::getTheEngine();
206  static const G4int nmax = 100;
207  if (OPTxs==0) {
208  // JMQ:
209  // It uses Dostrovsky's approximation for the inverse reaction cross
210  // in the probability for fragment emission
211  // MaximalKineticEnergy energy in the original version (V.Lara) was
212  // calculated at the Coulomb barrier.
213 
214  G4double Rb = 4.0*a0*maxKinEnergy;
215  G4double RbSqrt = std::sqrt(Rb);
216  G4double PEX1 = 0.0;
217  if (RbSqrt < 160.0) { PEX1 = G4Exp(-RbSqrt); }
218  G4double Rk = 0.0;
219  G4double FRk = 0.0;
220  G4int nn = 0;
221  do {
222  G4double RandNumber = rndm->flat();
223  Rk = 1.0 + (1./RbSqrt)*G4Log(RandNumber + (1.0-RandNumber)*PEX1);
224  G4double Q1 = 1.0;
225  G4double Q2 = 1.0;
226  if (theZ == 0) { // for emitted neutron
227  G4double Beta = (2.12/(resA13*resA13) - 0.05)*MeV/(0.76 + 2.2/resA13);
228  Q1 = 1.0 + Beta/maxKinEnergy;
229  Q2 = Q1*std::sqrt(Q1);
230  }
231 
232  static const G4double ssqr3 = 1.5*std::sqrt(3.0);
233  FRk = ssqr3 * Rk * (Q1 - Rk*Rk)/Q2;
234  if(nn > nmax) { break; }
235  ++nn;
236  // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
237  } while (FRk < rndm->flat());
238 
239  T = maxKinEnergy * (1.0-Rk*Rk) + minKinEnergy;
240 
241  } else {
242 
243  if(fVerbose > 1) {
244  G4cout << "###=== SampleEnergy: " << " Z= " << theZ
245  << " A= " << theA << " FragZ= " << fragZ
246  << " FragA= " << fragA << G4endl;
247  }
248  T = SampleEnergy();
249 
250  }
251  //G4cout << "-- new Z= " << theZ << " A= " << theA << " ekin= " << T << G4endl;
252  return T;
253  //return fLevelData->FindLevel(resZ, resA, resMass, Mass, partMass, T);
254 }
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double Z13(G4int Z) const
Definition: G4Pow.hh:132
static G4double ComputeCrossSection(G4double K, G4double cb, G4double resA13, G4double amu1, G4int idx, G4int Z, G4int A, G4int resA)
static constexpr double hbar_Planck
static constexpr double MeV
Definition: G4SIunits.hh:214
#define G4endl
Definition: G4ios.hh:61
static G4NuclearLevelData * GetInstance()
static constexpr double hbarc
G4int GetA_asInt() const
Definition: G4Fragment.hh:259
G4PairingCorrection * fPairCorr
G4double TotalProbability(const G4Fragment &fragment, G4double minKineticEnergy, G4double maxKineticEnergy, G4double CoulombBarrier=0.0)
static G4double ComputeCrossSection(G4double K, G4double cb, G4double resA13, G4double amu1, G4int idx, G4int Z, G4int resA)
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:281
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double IntegrateProbability(G4double elow, G4double ehigh, G4double CB)
Double_t K
const G4int nmax
double G4double
Definition: G4Types.hh:76
static constexpr double fermi
Definition: G4SIunits.hh:103
G4double CrossSection(G4double K, G4double CoulombBarrier)
void ResetIntegrator(size_t nbin, G4double de, G4double eps)
virtual double flat()=0
virtual G4double CalcBetaParam(const G4Fragment &fragment)=0
static constexpr double MeV
static constexpr double twopi
Definition: G4SIunits.hh:76
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4EvaporationProbability(G4int anA, G4int aZ, G4double aGamma, G4VCoulombBarrier *)
G4int GetZ_asInt() const
Definition: G4Fragment.hh:264
virtual G4double ComputeProbability(G4double K, G4double kBarrier)
int G4int
Definition: G4Types.hh:78
G4GLOB_DLL std::ostream G4cout
G4double GetPairingCorrection(G4int A, G4int Z) const
static G4double ComputePowerParameter(G4int resA, G4int idx)
virtual G4double EmissionProbability(const G4Fragment &fragment, G4double maxKineticEnergy)
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:276
double flat()
Definition: G4AblaRandom.cc:48
G4double SampleKineticEnergy(G4double minKineticEnergy, G4double maxKineticEnergy, G4double CoulombBarrier=0.0)
static constexpr double pi
Definition: SystemOfUnits.h:54
static constexpr double millibarn
Definition: SystemOfUnits.h:86
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
virtual G4double CalcAlphaParam(const G4Fragment &fragment)=0