Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4XTRTransparentRegRadModel.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 
28 #include <complex>
29 
31 #include "G4PhysicalConstants.hh"
32 #include "Randomize.hh"
33 #include "G4Integrator.hh"
34 #include "G4Gamma.hh"
35 
37 //
38 // Constructor, destructor
39 
41  G4Material* foilMat,G4Material* gasMat,
43  const G4String& processName) :
44  G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
45 {
46  G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
47 
48  // Build energy and angular integral spectra of X-ray TR photons from
49  // a radiator
50  fExitFlux = true;
51  fAlphaPlate = 10000;
52  fAlphaGas = 1000;
53 
54  // BuildTable();
55 }
56 
58 
60 {
61  ;
62 }
63 
65 //
66 //
67 
69 {
70  G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
71  G4int k, kMax, kMin;
72 
73  aMa = GetPlateLinearPhotoAbs(energy);
74  bMb = GetGasLinearPhotoAbs(energy);
75 
76  if(fCompton)
77  {
78  aMa += GetPlateCompton(energy);
79  bMb += GetGasCompton(energy);
80  }
81  aMa *= fPlateThick;
82  bMb *= fGasThick;
83 
84  sigma = aMa + bMb;
85 
86  cofPHC = 4.*pi*hbarc;
87  tmp = (fSigma1 - fSigma2)/cofPHC/energy;
88  cof1 = fPlateThick*tmp;
89  cof2 = fGasThick*tmp;
90 
91  cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
92  cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
93  cofMin /= cofPHC;
94 
95  // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
96  // else kMin = 1;
97 
98 
99  kMin = G4int(cofMin);
100  if (cofMin > kMin) kMin++;
101 
102  // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
103  // tmp /= cofPHC;
104  // kMax = G4int(tmp);
105  // if(kMax < 0) kMax = 0;
106  // kMax += kMin;
107 
108 
109  kMax = kMin + 19; // 5; // 9; // kMin + G4int(tmp);
110 
111  // tmp /= fGamma;
112  // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
113  // G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
114 
115  for( k = kMin; k <= kMax; k++ )
116  {
117  tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
118  result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
119 
120  if( k == kMin && kMin == G4int(cofMin) )
121  {
122  sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
123  }
124  else
125  {
126  sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
127  }
128  // G4cout<<"k = "<<k<<"; sum = "<<sum<<G4endl;
129  }
130  result = 4.*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
131  result *= ( 1. - std::exp(-fPlateNumber*sigma) )/( 1. - std::exp(-sigma) );
132  return result;
133 }
134 
135 
137 //
138 // Approximation for radiator interference factor for the case of
139 // fully Regular radiator. The plate and gas gap thicknesses are fixed .
140 // The mean values of the plate and gas gap thicknesses
141 // are supposed to be about XTR formation zones but much less than
142 // mean absorption length of XTR photons in coresponding material.
143 
144 G4double
146  G4double gamma, G4double varAngle )
147 {
148  /*
149  G4double result, Za, Zb, Ma, Mb, sigma;
150 
151  Za = GetPlateFormationZone(energy,gamma,varAngle);
152  Zb = GetGasFormationZone(energy,gamma,varAngle);
153  Ma = GetPlateLinearPhotoAbs(energy);
154  Mb = GetGasLinearPhotoAbs(energy);
155  sigma = Ma*fPlateThick + Mb*fGasThick;
156 
157  G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
158  G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
159 
160  G4complex Ha = std::pow(Ca,-fAlphaPlate);
161  G4complex Hb = std::pow(Cb,-fAlphaGas);
162  G4complex H = Ha*Hb;
163  G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
164  * G4double(fPlateNumber) ;
165  G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
166  * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
167  // *(1.0 - std::pow(H,fPlateNumber)) ;
168  G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
169  // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
170  result = 2.0*std::real(R);
171  return result;
172  */
173  // numerically unstable result
174 
175  G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
176 
177  aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
178  bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
179  aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
180  bMb = fGasThick*GetGasLinearPhotoAbs(energy);
181  sigma = aMa*fPlateThick + bMb*fGasThick;
182  Qa = std::exp(-0.5*aMa);
183  Qb = std::exp(-0.5*bMb);
184  Q = Qa*Qb;
185 
186  G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
187  G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
188  G4complex H = Ha*Hb;
189  G4complex Hs = conj(H);
190  D = 1.0 /( (1. - Q)*(1. - Q) +
191  4.*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
192  G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
194  G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
195  // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
196  * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
197  G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
198  result = 2.0*std::real(R);
199  return result;
200 
201 }
202 
203 
204 //
205 //
207 
208 
209 
210 
211 
212 
213 
214 
G4double GetGasCompton(G4double)
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override
#define G4endl
Definition: G4ios.hh:61
double D(double temp)
static constexpr double hbarc
Float_t tmp
std::complex< G4double > G4complex
Definition: G4Types.hh:81
double G4double
Definition: G4Types.hh:76
G4double GetGasFormationZone(G4double, G4double, G4double)
double energy
Definition: plottest35.C:25
Double_t R
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double G4ParticleHPJENDLHEData::G4double result
int G4int
Definition: G4Types.hh:78
G4double GetPlateCompton(G4double)
G4GLOB_DLL std::ostream G4cout
G4double SpectralXTRdEdx(G4double energy) override
Char_t n[5]
static double Q[]
static constexpr double pi
Definition: G4SIunits.hh:75
G4double GetGasLinearPhotoAbs(G4double)
G4XTRTransparentRegRadModel(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRTransparentRegRadModel")
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)