Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4UrbanMscModel.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: $
27 // GEANT4 tag $Name: $
28 //
29 // -------------------------------------------------------------------
30 //
31 // GEANT4 Class file
32 //
33 //
34 // File name: G4UrbanMscModel
35 //
36 // Author: Laszlo Urban
37 //
38 // Creation date: 19.02.2013
39 //
40 // Created from G4UrbanMscModel96
41 //
42 // New parametrization for theta0
43 // Correction for very small step length
44 //
45 // Class Description:
46 //
47 // Implementation of the model of multiple scattering based on
48 // H.W.Lewis Phys Rev 78 (1950) 526 and others
49 
50 // -------------------------------------------------------------------
51 // In its present form the model can be used for simulation
52 // of the e-/e+ multiple scattering
53 //
54 
55 
56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
58 
59 #include "G4UrbanMscModel.hh"
60 #include "G4PhysicalConstants.hh"
61 #include "G4SystemOfUnits.hh"
62 #include "Randomize.hh"
63 #include "G4Electron.hh"
64 #include "G4Positron.hh"
65 #include "G4LossTableManager.hh"
66 #include "G4EmParameters.hh"
68 
69 #include "G4Poisson.hh"
70 #include "G4Pow.hh"
71 #include "globals.hh"
72 #include "G4Log.hh"
73 #include "G4Exp.hh"
74 
75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
76 
77 using namespace std;
78 
79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
80 
82  : G4VMscModel(nam)
83 {
84  masslimite = 0.6*MeV;
85  lambdalimit = 1.*mm;
86  fr = 0.02;
87  taubig = 8.0;
88  tausmall = 1.e-16;
89  taulim = 1.e-6;
91  tlimitminfix = 0.01*nm;
92  tlimitminfix2 = 1.*nm;
94  smallstep = 1.e10;
95  currentRange = 0. ;
96  rangeinit = 0.;
97  tlimit = 1.e10*mm;
98  tlimitmin = 10.*tlimitminfix;
99  tgeom = 1.e50*mm;
100  geombig = 1.e50*mm;
101  geommin = 1.e-3*mm;
102  geomlimit = geombig;
103  presafety = 0.*mm;
104 
105  facsafety = 0.6;
106 
107  Zold = 0.;
108  Zeff = 1.;
109  Z2 = 1.;
110  Z23 = 1.;
111  lnZ = 0.;
112  coeffth1 = 0.;
113  coeffth2 = 0.;
114  coeffc1 = 0.;
115  coeffc2 = 0.;
116  coeffc3 = 0.;
117  coeffc4 = 0.;
118  particle = 0;
119 
122  rndmEngineMod = G4Random::getTheEngine();
123 
124  firstStep = true;
125  insideskin = false;
126  latDisplasmentbackup = false;
127  dispAlg96 = true;
128 
129  rangecut = geombig;
130  drr = 0.35 ;
131  finalr = 10.*um ;
132 
134 
136  charge = ChargeSquare = 1.0;
138  = zPathLength = par1 = par2 = par3 = 0;
139 
141  fParticleChange = nullptr;
142  couple = nullptr;
143 }
144 
145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146 
148 {}
149 
150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
151 
153  const G4DataVector&)
154 {
155  // set values of some data members
156  SetParticle(p);
158 
161 
162  //G4cout << "### G4UrbanMscModel::Initialise done for "
163  // << p->GetParticleName() << G4endl;
164 }
165 
166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
167 
169  const G4ParticleDefinition* part,
170  G4double KineticEnergy,
171  G4double AtomicNumber,G4double,
173 {
174  static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
175 
176  static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38.,47.,
177  50., 56., 64., 74., 79., 82. };
178 
179  // corr. factors for e-/e+ lambda for T <= Tlim
180  static const G4double celectron[15][22] =
181  {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
182  1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
183  1.112,1.108,1.100,1.093,1.089,1.087 },
184  {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
185  1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
186  1.109,1.105,1.097,1.090,1.086,1.082 },
187  {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
188  1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
189  1.131,1.124,1.113,1.104,1.099,1.098 },
190  {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
191  1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
192  1.112,1.105,1.096,1.089,1.085,1.098 },
193  {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
194  1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
195  1.073,1.070,1.064,1.059,1.056,1.056 },
196  {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
197  1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
198  1.074,1.070,1.063,1.059,1.056,1.052 },
199  {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
200  1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
201  1.068,1.064,1.059,1.054,1.051,1.050 },
202  {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
203  1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
204  1.039,1.037,1.034,1.031,1.030,1.036 },
205  {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
206  1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
207  1.031,1.028,1.024,1.022,1.021,1.024 },
208  {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
209  1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
210  1.020,1.017,1.015,1.013,1.013,1.020 },
211  {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
212  1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
213  0.995,0.993,0.993,0.993,0.993,1.011 },
214  {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
215  1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
216  0.974,0.972,0.973,0.974,0.975,0.987 },
217  {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
218  1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
219  0.950,0.947,0.949,0.952,0.954,0.963 },
220  {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
221  1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
222  0.941,0.938,0.940,0.944,0.946,0.954 },
223  {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
224  1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
225  0.933,0.930,0.933,0.936,0.939,0.949 }};
226 
227  static const G4double cpositron[15][22] = {
228  {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
229  1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
230  1.131,1.126,1.117,1.108,1.103,1.100 },
231  {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
232  1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
233  1.138,1.132,1.122,1.113,1.108,1.102 },
234  {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
235  1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
236  1.203,1.190,1.173,1.159,1.151,1.145 },
237  {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
238  1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
239  1.225,1.210,1.191,1.175,1.166,1.174 },
240  {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
241  1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
242  1.217,1.203,1.184,1.169,1.160,1.151 },
243  {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
244  1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
245  1.237,1.222,1.201,1.184,1.174,1.159 },
246  {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
247  1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
248  1.252,1.234,1.212,1.194,1.183,1.170 },
249  {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
250  2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
251  1.254,1.237,1.214,1.195,1.185,1.179 },
252  {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
253  2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
254  1.312,1.288,1.258,1.235,1.221,1.205 },
255  {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
256  2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
257  1.320,1.294,1.264,1.240,1.226,1.214 },
258  {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
259  2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
260  1.328,1.302,1.270,1.245,1.231,1.233 },
261  {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
262  2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
263  1.361,1.330,1.294,1.267,1.251,1.239 },
264  {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
265  3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
266  1.409,1.372,1.330,1.298,1.280,1.258 },
267  {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
268  3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
269  1.442,1.400,1.354,1.319,1.299,1.272 },
270  {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
271  3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
272  1.456,1.412,1.364,1.328,1.307,1.282 }};
273 
274  //data/corrections for T > Tlim
275 
276  static const G4double hecorr[15] = {
277  120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
278  57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
279  -22.30};
280 
281  G4double sigma;
282  SetParticle(part);
283 
284  Z23 = G4Pow::GetInstance()->Z23(G4lrint(AtomicNumber));
285 
286  // correction if particle .ne. e-/e+
287  // compute equivalent kinetic energy
288  // lambda depends on p*beta ....
289 
290  G4double eKineticEnergy = KineticEnergy;
291 
292  if(mass > electron_mass_c2)
293  {
294  G4double TAU = KineticEnergy/mass ;
295  G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
296  G4double w = c-2. ;
297  G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
298  eKineticEnergy = electron_mass_c2*tau ;
299  }
300 
301  G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
302  G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
303  /(eTotalEnergy*eTotalEnergy);
304  G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
305  /(electron_mass_c2*electron_mass_c2);
306 
307  static const G4double epsfactor = 2.*CLHEP::electron_mass_c2*
310  G4double eps = epsfactor*bg2/Z23;
311 
312  if (eps<epsmin) sigma = 2.*eps*eps;
313  else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
314  else sigma = G4Log(2.*eps)-1.+1./eps;
315 
316  sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
317 
318  // interpolate in AtomicNumber and beta2
319  G4double c1,c2,cc1,cc2,corr;
320 
321  // get bin number in Z
322  G4int iZ = 14;
323  // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
324  while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
325  if (iZ==14) iZ = 13;
326  if (iZ==-1) iZ = 0 ;
327 
328  G4double ZZ1 = Zdat[iZ];
329  G4double ZZ2 = Zdat[iZ+1];
330  G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
331  ((ZZ2-ZZ1)*(ZZ2+ZZ1));
332 
333  static const G4double Tlim = 10.*CLHEP::MeV;
334  static const G4double sigmafactor =
336  static const G4double beta2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
338  static const G4double bg2lim = Tlim*(Tlim+2.*CLHEP::electron_mass_c2)/
340 
341  static const G4double sig0[15] = {
342  0.2672*CLHEP::barn, 0.5922*CLHEP::barn, 2.653*CLHEP::barn, 6.235*CLHEP::barn,
343  11.69*CLHEP::barn , 13.24*CLHEP::barn , 16.12*CLHEP::barn, 23.00*CLHEP::barn,
344  35.13*CLHEP::barn , 39.95*CLHEP::barn , 50.85*CLHEP::barn, 67.19*CLHEP::barn,
345  91.15*CLHEP::barn , 104.4*CLHEP::barn , 113.1*CLHEP::barn};
346 
347  static const G4double Tdat[22] = {
348  100*CLHEP::eV, 200*CLHEP::eV, 400*CLHEP::eV, 700*CLHEP::eV,
351  100*CLHEP::keV, 200*CLHEP::keV, 400*CLHEP::keV, 700*CLHEP::keV,
353  10*CLHEP::MeV, 20*CLHEP::MeV};
354 
355  if(eKineticEnergy <= Tlim)
356  {
357  // get bin number in T (beta2)
358  G4int iT = 21;
359  // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
360  while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
361  if(iT==21) iT = 20;
362  if(iT==-1) iT = 0 ;
363 
364  // calculate betasquare values
365  G4double T = Tdat[iT], E = T + electron_mass_c2;
366  G4double b2small = T*(E+electron_mass_c2)/(E*E);
367 
368  T = Tdat[iT+1]; E = T + electron_mass_c2;
369  G4double b2big = T*(E+electron_mass_c2)/(E*E);
370  G4double ratb2 = (beta2-b2small)/(b2big-b2small);
371 
372  if (charge < 0.)
373  {
374  c1 = celectron[iZ][iT];
375  c2 = celectron[iZ+1][iT];
376  cc1 = c1+ratZ*(c2-c1);
377 
378  c1 = celectron[iZ][iT+1];
379  c2 = celectron[iZ+1][iT+1];
380  cc2 = c1+ratZ*(c2-c1);
381 
382  corr = cc1+ratb2*(cc2-cc1);
383 
384  sigma *= sigmafactor/corr;
385  }
386  else
387  {
388  c1 = cpositron[iZ][iT];
389  c2 = cpositron[iZ+1][iT];
390  cc1 = c1+ratZ*(c2-c1);
391 
392  c1 = cpositron[iZ][iT+1];
393  c2 = cpositron[iZ+1][iT+1];
394  cc2 = c1+ratZ*(c2-c1);
395 
396  corr = cc1+ratb2*(cc2-cc1);
397 
398  sigma *= sigmafactor/corr;
399  }
400  }
401  else
402  {
403  c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
404  c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
405  if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
406  sigma = c1+ratZ*(c2-c1) ;
407  else if(AtomicNumber < ZZ1)
408  sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
409  else if(AtomicNumber > ZZ2)
410  sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
411  }
412  return sigma;
413 
414 }
415 
416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
417 
419 {
421  firstStep = true;
422  insideskin = false;
423  fr = facrange;
425  smallstep = 1.e10;
427  tlimitmin = 10.*tlimitminfix;
428  rndmEngineMod = G4Random::getTheEngine();
429 }
430 
431 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
432 
434  const G4Track& track,
435  G4double& currentMinimalStep)
436 {
437  tPathLength = currentMinimalStep;
438  const G4DynamicParticle* dp = track.GetDynamicParticle();
439 
440  G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
441  G4StepStatus stepStatus = sp->GetStepStatus();
442  couple = track.GetMaterialCutsCouple();
449  /*
450  G4cout << "G4Urban::StepLimit tPathLength= " << tPathLength
451  << " range= " <<currentRange<< " lambda= "<<lambda0
452  <<G4endl;
453  */
454  // set flag to default values
456  // couple->GetMaterial()->GetTotNbOfAtomsPerVolume();
457 
458  if(Zold != Zeff)
459  UpdateCache();
460 
461  // stop here if small step
462  if(tPathLength < tlimitminfix) {
463  latDisplasment = false;
464  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
465  }
466 
467  // upper limit for the straight line distance the particle can travel
468  // for electrons and positrons
469  G4double distance = currentRange;
470  // for muons, hadrons
471  if(mass > masslimite) {
472  distance *= (1.15-9.76e-4*Zeff);
473  } else {
474  distance *= (1.20-Zeff*(1.62e-2-9.22e-5*Zeff));
475  }
476  presafety = sp->GetSafety();
477  /*
478  G4cout << "G4Urban::StepLimit tPathLength= "
479  <<tPathLength<<" safety= " << presafety
480  << " range= " <<currentRange<< " lambda= "<<lambda0
481  << " Alg: " << steppingAlgorithm <<G4endl;
482  */
483  // far from geometry boundary
484  if(distance < presafety)
485  {
486  latDisplasment = false;
487  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
488  }
489 
491  static const G4double invmev = 1.0/CLHEP::MeV;
492  // standard version
493  //
495  {
496  //compute geomlimit and presafety
498  /*
499  G4cout << "G4Urban::Distance to boundary geomlimit= "
500  <<geomlimit<<" safety= " << presafety<<G4endl;
501  */
502 
503  // is it far from boundary ?
504  if(distance < presafety)
505  {
506  latDisplasment = false;
507  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
508  }
509 
510  smallstep += 1.;
511  insideskin = false;
512 
513  // initialisation at firs step and at the boundary
514  if(firstStep || (stepStatus == fGeomBoundary))
515  {
517  if(!firstStep) { smallstep = 1.; }
518 
519  //define stepmin here (it depends on lambda!)
520  //rough estimation of lambda_elastic/lambda_transport
521  G4double rat = currentKinEnergy*invmev;
522  rat = 1.e-3/(rat*(10.+rat)) ;
523  //stepmin ~ lambda_elastic
524  stepmin = rat*lambda0;
526  tlimitmin = max(10*stepmin,tlimitminfix);
527  /*
528  G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
529  << " tlimitmin= " << tlimitmin << " geomlimit= "
530  << geomlimit <<G4endl;
531  */
532  // constraint from the geometry
533 
534  if((geomlimit < geombig) && (geomlimit > geommin))
535  {
536  // geomlimit is a geometrical step length
537  // transform it to true path length (estimation)
538  if((1.-geomlimit/lambda0) > 0.)
539  geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
540 
541  if(stepStatus == fGeomBoundary)
543  else
544  tgeom = 2.*geomlimit/facgeom;
545  }
546  else
547  tgeom = geombig;
548  }
549 
550  //step limit
552 
553  //lower limit for tlimit
555  tlimit = min(tlimit,tgeom);
556  /*
557  G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
558  << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
559  */
560  // shortcut
561  if((tPathLength < tlimit) && (tPathLength < presafety) &&
562  (smallstep > skin) && (tPathLength < geomlimit-0.999*skindepth))
563  {
564  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
565  }
566 
567  // step reduction near to boundary
568  if(smallstep <= skin)
569  {
570  tlimit = stepmin;
571  insideskin = true;
572  }
573  else if(geomlimit < geombig)
574  {
575  if(geomlimit > skindepth)
576  {
577  tlimit = min(tlimit, geomlimit-0.999*skindepth);
578  }
579  else
580  {
581  insideskin = true;
582  tlimit = min(tlimit, stepmin);
583  }
584  }
585 
586  tlimit = max(tlimit, stepmin);
587 
588  // randomise if not 'small' step and step determined by msc
589  if((tlimit < tPathLength) && (smallstep > skin) && !insideskin)
590  {
592  }
593  else
594  {
596  }
597 
598  }
599  // for 'normal' simulation with or without magnetic field
600  // there no small step/single scattering at boundaries
601  else if(steppingAlgorithm == fUseSafety)
602  {
603  if(stepStatus != fGeomBoundary) {
605  }
606  /*
607  G4cout << "presafety= " << presafety
608  << " firstStep= " << firstStep
609  << " stepStatus= " << stepStatus
610  << G4endl;
611  */
612  // is far from boundary
613  if(distance < presafety)
614  {
615  latDisplasment = false;
616  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
617  }
618 
619  if(firstStep || (stepStatus == fGeomBoundary)) {
621  fr = facrange;
622  // 9.1 like stepping for e+/e- only (not for muons,hadrons)
623  if(mass < masslimite)
624  {
626  if(lambda0 > lambdalimit) {
627  fr *= (0.75+0.25*lambda0/lambdalimit);
628  }
629  }
630  //lower limit for tlimit
631  G4double rat = currentKinEnergy*invmev;
632  rat = 1.e-3/(rat*(10 + rat)) ;
633  stepmin = lambda0*rat;
635  }
636 
637  //step limit
639 
640  //lower limit for tlimit
641  tlimit = max(tlimit, tlimitmin);
642 
643  // randomise if step determined by msc
644  if(tlimit < tPathLength)
645  {
647  }
648  else { tPathLength = min(tPathLength, tlimit); }
649  }
650  // new stepping mode UseSafetyPlus
652  {
653  if(stepStatus != fGeomBoundary) {
655  }
656  /*
657  G4cout << "presafety= " << presafety
658  << " firstStep= " << firstStep
659  << " stepStatus= " << stepStatus
660  << G4endl;
661  */
662  // is far from boundary
663  if(distance < presafety)
664  {
665  latDisplasment = false;
666  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
667  }
668 
669  if(firstStep || (stepStatus == fGeomBoundary)) {
671  fr = facrange;
672  rangecut = geombig;
673  if(mass < masslimite)
674  {
675  G4int index = 1;
676  if(charge > 0.) index = 2;
678  if(lambda0 > lambdalimit) {
679  fr *= (0.84+0.16*lambda0/lambdalimit);
680  }
681  }
682  //lower limit for tlimit
683  G4double rat = currentKinEnergy*invmev;
684  rat = 1.e-3/(rat*(10 + rat)) ;
685  stepmin = lambda0*rat;
687  }
688  //step limit
690 
691  //lower limit for tlimit
693 
694  // condition for tPathLength from drr and finalr
695  if(currentRange > finalr) {
696  G4double tmax = drr*currentRange+
697  finalr*(1.-drr)*(2.-finalr/currentRange);
698  tPathLength = min(tPathLength,tmax);
699  }
700 
701  // condition safety
702  if(currentRange > rangecut) {
703  if(firstStep) {
704  tPathLength = min(tPathLength,facsafety*presafety);
705  } else if(stepStatus != fGeomBoundary && presafety > stepmin) {
706  tPathLength = min(tPathLength,presafety);
707  }
708  }
709 
710  // randomise if step determined by msc
711  if(tPathLength < tlimit)
712  {
714  }
715  else { tPathLength = min(tPathLength, tlimit); }
716  }
717 
718  // version similar to 7.1 (needed for some experiments)
719  else
720  {
721  if (stepStatus == fGeomBoundary)
722  {
724  else { tlimit = facrange*lambda0; }
725 
727  }
728  // randomise if step determined by msc
729  if(tlimit < tPathLength)
730  {
732  }
733  else { tPathLength = min(tPathLength, tlimit); }
734  }
735  firstStep = false;
736  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
737 }
738 
739 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
740 
742 {
743  lambdaeff = lambda0;
744  par1 = -1. ;
745  par2 = par3 = 0. ;
746 
747  // this correction needed to run MSC with eIoni and eBrem inactivated
748  // and makes no harm for a normal run
750 
751  // do the true -> geom transformation
753 
754  // z = t for very small tPathLength
756 
757  // VI: it is already checked
758  // if(tPathLength > currentRange)
759  // tPathLength = currentRange ;
760  /*
761  G4cout << "ComputeGeomPathLength: tpl= " << tPathLength
762  << " R= " << currentRange << " L0= " << lambda0
763  << " E= " << currentKinEnergy << " "
764  << particle->GetParticleName() << G4endl;
765  */
767 
768  if ((tau <= tausmall) || insideskin) {
770 
771  } else if (tPathLength < currentRange*dtrl) {
772  if(tau < taulim) zPathLength = tPathLength*(1.-0.5*tau) ;
773  else zPathLength = lambda0*(1.-G4Exp(-tau));
774 
775  } else if(currentKinEnergy < mass || tPathLength == currentRange) {
776  par1 = 1./currentRange ;
777  par2 = 1./(par1*lambda0) ;
778  par3 = 1.+par2 ;
779  if(tPathLength < currentRange) {
780  zPathLength =
782  } else {
783  zPathLength = 1./(par1*par3);
784  }
785 
786  } else {
788  G4double T1 = GetEnergy(particle,rfin,couple);
790 
791  par1 = (lambda0-lambda1)/(lambda0*tPathLength);
792  //G4cout << "par1= " << par1 << " L1= " << lambda1 << G4endl;
793  par2 = 1./(par1*lambda0);
794  par3 = 1.+par2 ;
795  zPathLength = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3);
796  }
797 
799  //G4cout<< "zPathLength= "<< zPathLength<< " L0= " << lambda0 << G4endl;
800  return zPathLength;
801 }
802 
803 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
804 
806 {
807  // step defined other than transportation
808  if(geomStepLength == zPathLength) {
809  //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
810  // << " step= " << geomStepLength << " *** " << G4endl;
811  return tPathLength;
812  }
813 
814  zPathLength = geomStepLength;
815 
816  // t = z for very small step
817  if(geomStepLength < tlimitminfix2) {
818  tPathLength = geomStepLength;
819 
820  // recalculation
821  } else {
822 
823  G4double tlength = geomStepLength;
824  if((geomStepLength > lambda0*tausmall) && !insideskin) {
825 
826  if(par1 < 0.) {
827  tlength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
828  } else {
829  if(par1*par3*geomStepLength < 1.) {
830  tlength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
831  } else {
832  tlength = currentRange;
833  }
834  }
835 
836  if(tlength < geomStepLength) { tlength = geomStepLength; }
837  else if(tlength > tPathLength) { tlength = tPathLength; }
838  }
839  tPathLength = tlength;
840  }
841  //G4cout << "Urban::ComputeTrueLength: tPathLength= " << tPathLength
842  // << " step= " << geomStepLength << " &&& " << G4endl;
843 
844  return tPathLength;
845 }
846 
847 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
848 
851  G4double /*safety*/)
852 {
853  fDisplacement.set(0.0,0.0,0.0);
855  if (tPathLength > currentRange*dtrl) {
857  } else {
859  }
860 
861  if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
862  (tPathLength < tausmall*lambda0)) { return fDisplacement; }
863 
864  G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
865 
866  // protection against 'bad' cth values
867  if(std::abs(cth) >= 1.0) { return fDisplacement; }
868 
869  /*
870  if(cth < 1.0 - 1000*tPathLength/lambda0 && cth < 0.5 &&
871  kineticEnergy > 20*MeV) {
872  G4cout << "### G4UrbanMscModel::SampleScattering for "
873  << particle->GetParticleName()
874  << " E(MeV)= " << kineticEnergy/MeV
875  << " Step(mm)= " << tPathLength/mm
876  << " in " << CurrentCouple()->GetMaterial()->GetName()
877  << " CosTheta= " << cth << G4endl;
878  }
879  */
880  G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
881  G4double phi = twopi*rndmEngineMod->flat();
882  G4double dirx = sth*cos(phi);
883  G4double diry = sth*sin(phi);
884 
885  G4ThreeVector newDirection(dirx,diry,cth);
886  newDirection.rotateUz(oldDirection);
887 
889  /*
890  G4cout << "G4UrbanMscModel::SampleSecondaries: e(MeV)= " << kineticEnergy
891  << " sinTheta= " << sth << " safety(mm)= " << safety
892  << " trueStep(mm)= " << tPathLength
893  << " geomStep(mm)= " << zPathLength
894  << G4endl;
895  */
896 
897  if (latDisplasment && currentTau >= tausmall) {
898  if(dispAlg96) { SampleDisplacement(sth, phi); }
899  else { SampleDisplacementNew(cth, phi); }
900  fDisplacement.rotateUz(oldDirection);
901  }
902  return fDisplacement;
903 }
904 
905 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
906 
908  G4double KineticEnergy)
909 {
910  G4double cth = 1. ;
911  G4double tau = trueStepLength/lambda0;
912  currentTau = tau;
913  lambdaeff = lambda0;
914 
915  G4double lambda1 = GetTransportMeanFreePath(particle,KineticEnergy);
916  if(std::abs(lambda1 - lambda0) > lambda0*0.01 && lambda1 > 0.)
917  {
918  // mean tau value
919  tau = trueStepLength*G4Log(lambda0/lambda1)/(lambda0-lambda1);
920  }
921 
922  currentTau = tau ;
923  lambdaeff = trueStepLength/currentTau;
925 
926  if (tau >= taubig) { cth = -1.+2.*rndmEngineMod->flat(); }
927  else if (tau >= tausmall) {
928  static const G4double numlim = 0.01;
929  static const G4double onethird = 1./3.;
930  G4double xmeanth, x2meanth;
931  if(tau < numlim) {
932  xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
933  x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*onethird;
934  } else {
935  xmeanth = G4Exp(-tau);
936  x2meanth = (1.+2.*G4Exp(-2.5*tau))*onethird;
937  }
938 
939  // too large step of low-energy particle
940  G4double relloss = 1. - KineticEnergy/currentKinEnergy;
941  static const G4double rellossmax= 0.50;
942  if(relloss > rellossmax) {
943  return SimpleScattering(xmeanth,x2meanth);
944  }
945  // is step extreme small ?
946  G4bool extremesmallstep = false ;
948  G4double theta0 = 0.;
949  if(trueStepLength > tsmall) {
950  theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
951  } else {
952  theta0 = sqrt(trueStepLength/tsmall)*ComputeTheta0(tsmall,KineticEnergy);
953  extremesmallstep = true ;
954  }
955 
956  static const G4double onesixth = 1./6.;
957  static const G4double theta0max = CLHEP::pi*onesixth;
958  //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max
959  // << " sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
960 
961  // protection for very small angles
962  G4double theta2 = theta0*theta0;
963 
964  if(theta2 < tausmall) { return cth; }
965 
966  if(theta0 > theta0max) {
967  return SimpleScattering(xmeanth,x2meanth);
968  }
969 
970  G4double x = theta2*(1.0 - theta2/12.);
971  if(theta2 > numlim) {
972  G4double sth = 2*sin(0.5*theta0);
973  x = sth*sth;
974  }
975 
976  // parameter for tail
977  G4double ltau= G4Log(tau);
978  G4double u = extremesmallstep
979  ? G4Exp(G4Log(tsmall/lambda0)*onesixth)
980  : G4Exp(ltau*onesixth);
982  G4double xsi = coeffc1+u*(coeffc2+coeffc3*u)+coeffc4*xx;
983 
984  // tail should not be too big
985  xsi = std::max(xsi, 1.9);
986  /*
987  if(KineticEnergy > 20*MeV && xsi < 1.6) {
988  G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= "
989  << KineticEnergy/GeV
990  << " !!** c= " << xsi
991  << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff
992  << " " << couple->GetMaterial()->GetName()
993  << " tau= " << tau << G4endl;
994  }
995  */
996 
997  G4double c = xsi;
998 
999  if(std::abs(c-3.) < 0.001) { c = 3.001; }
1000  else if(std::abs(c-2.) < 0.001) { c = 2.001; }
1001 
1002  G4double c1 = c-1.;
1003 
1004  G4double ea = G4Exp(-xsi);
1005  G4double eaa = 1.-ea ;
1006  G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
1007  G4double x0 = 1. - xsi*x;
1008 
1009  // G4cout << " xmean1= " << xmean1 << " xmeanth= " << xmeanth << G4endl;
1010 
1011  if(xmean1 <= 0.999*xmeanth) {
1012  return SimpleScattering(xmeanth,x2meanth);
1013  }
1014  //from continuity of derivatives
1015  G4double b = 1.+(c-xsi)*x;
1016 
1017  G4double b1 = b+1.;
1018  G4double bx = c*x;
1019 
1020  G4double eb1 = G4Exp(G4Log(b1)*c1);
1021  G4double ebx = G4Exp(G4Log(bx)*c1);
1022  G4double d = ebx/eb1;
1023 
1024  G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
1025 
1026  G4double f1x0 = ea/eaa;
1027  G4double f2x0 = c1/(c*(1. - d));
1028  G4double prob = f2x0/(f1x0+f2x0);
1029 
1030  G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
1031 
1032  // sampling of costheta
1033  //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
1034  // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
1035  // << G4endl;
1036  if(rndmEngineMod->flat() < qprob)
1037  {
1038  G4double var = 0;
1039  if(rndmEngineMod->flat() < prob) {
1040  cth = 1.+G4Log(ea+rndmEngineMod->flat()*eaa)*x;
1041  } else {
1042  var = (1.0 - d)*rndmEngineMod->flat();
1043  if(var < numlim*d) {
1044  var /= (d*c1);
1045  cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
1046  } else {
1047  cth = 1. + x*(c - xsi - c*G4Exp(-G4Log(var + d)/c1));
1048  }
1049  }
1050  /*
1051  if(KineticEnergy > 5*GeV && cth < 0.9) {
1052  G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= "
1053  << KineticEnergy/GeV
1054  << " 1-cosT= " << 1 - cth
1055  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1056  << " tau= " << tau
1057  << " prob= " << prob << " var= " << var << G4endl;
1058  G4cout << " c= " << c << " qprob= " << qprob << " eb1= " << eb1
1059  << " ebx= " << ebx
1060  << " c1= " << c1 << " b= " << b << " b1= " << b1
1061  << " bx= " << bx << " d= " << d
1062  << " ea= " << ea << " eaa= " << eaa << G4endl;
1063  }
1064  */
1065  }
1066  else {
1067  cth = -1.+2.*rndmEngineMod->flat();
1068  /*
1069  if(KineticEnergy > 5*GeV) {
1070  G4cout << "G4UrbanMscModel::SampleCosineTheta: E(GeV)= "
1071  << KineticEnergy/GeV
1072  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1073  << " qprob= " << qprob << G4endl;
1074  }
1075  */
1076  }
1077  }
1078  return cth ;
1079 }
1080 
1081 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1082 
1084  G4double KineticEnergy)
1085 {
1086  // for all particles take the width of the central part
1087  // from a parametrization similar to the Highland formula
1088  // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
1089  G4double invbetacp = std::sqrt((currentKinEnergy+mass)*(KineticEnergy+mass)/
1091  KineticEnergy*(KineticEnergy+2.*mass)));
1092  G4double y = trueStepLength/currentRadLength;
1093 
1094  if(particle == positron)
1095  {
1096  static const G4double xl= 0.6;
1097  static const G4double xh= 0.9;
1098  static const G4double e = 113.0;
1099  G4double corr;
1100 
1101  G4double tau = std::sqrt(currentKinEnergy*KineticEnergy)/mass;
1102  G4double x = std::sqrt(tau*(tau+2.)/((tau+1.)*(tau+1.)));
1103  G4double a = 0.994-4.08e-3*Zeff;
1104  G4double b = 7.16+(52.6+365./Zeff)/Zeff;
1105  G4double c = 1.000-4.47e-3*Zeff;
1106  G4double d = 1.21e-3*Zeff;
1107  if(x < xl) {
1108  corr = a*(1.-G4Exp(-b*x));
1109  } else if(x > xh) {
1110  corr = c+d*G4Exp(e*(x-1.));
1111  } else {
1112  G4double yl = a*(1.-G4Exp(-b*xl));
1113  G4double yh = c+d*G4Exp(e*(xh-1.));
1114  G4double y0 = (yh-yl)/(xh-xl);
1115  G4double y1 = yl-y0*xl;
1116  corr = y0*x+y1;
1117  }
1118  //==================================================================
1119  y *= corr*(1.+Zeff*(1.84035e-4*Zeff-1.86427e-2)+0.41125);
1120  }
1121 
1122  static const G4double c_highland = 13.6*CLHEP::MeV;
1123  G4double theta0 = c_highland*std::abs(charge)*std::sqrt(y)*invbetacp;
1124 
1125  // correction factor from e- scattering data
1126  theta0 *= (coeffth1+coeffth2*G4Log(y));
1127  return theta0;
1128 }
1129 
1130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1131 
1132 
1134 {
1135  //simple distribution for u=r/rmax
1136  // based on single scattering results
1137  // ~(u/u0)**p1 for u < u0
1138  // ~((1-u)/(1-u0))**p2 for u >= u0
1139 
1141  G4double r = 0.;
1142  if(rmax > 0.)
1143  {
1144  static const G4double su0 = 0.851549;
1145  static const G4double sp1 = 3.02549;
1146  static const G4double sp2 = 1.84108;
1147  static const G4double su1 = 1-su0;
1148  static const G4double sp11 = sp1+1;
1149  static const G4double sp21 = sp2+1;
1150  static const G4double sweight = 0.802110;
1151  G4double u;
1152 
1153  if(rndmEngineMod->flat() < sweight) {
1154  u = su0*G4Exp(G4Log(rndmEngineMod->flat())/sp11);
1155  } else {
1156  u = 1-su1*G4Exp(G4Log(1-rndmEngineMod->flat())/sp21);
1157  }
1158  r = rmax*u ;
1159  }
1160 
1161  //simple distribution for v=Phi-phi=psi ~exp(-beta*v)
1162  // alpha determined from the requirement that distribution should give
1163  // the same mean value than that obtained from the ss simulation
1164  if(r > 0.)
1165  {
1166  static const G4double cbeta = 1.933 ;
1167  static const G4double cbeta1 = 1.-exp(-cbeta*CLHEP::pi);
1168  G4double psi = -G4Log(1.-rndmEngineMod->flat()*cbeta1)/cbeta;
1169  G4double Phi = (rndmEngineMod->flat() < 0.5) ? phi+psi : phi-psi;
1170  fDisplacement.set(r*std::cos(Phi),r*std::sin(Phi),0.0);
1171  }
1172 }
1173 
1174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1175 
1177 {
1178  //sample displacement r
1179 
1181  G4double r = 0.;
1182  G4double u = r/rmax;
1183  if(rmax > 0.)
1184  {
1185  G4double rej;
1186  G4int count = 0;
1187 
1188  static const G4double reps = 1.e-6;
1189  static const G4double rp1 = 1.61385e+1;
1190  static const G4double rp2 = 3.26646e+0;
1191  static const G4double rp3 =-3.35702e+0;
1192  static const G4double rp4 = 7.38037e+1;
1193  static const G4double rp5 =-1.12829e+2;
1194  static const G4double rp6 = 4.63974e+1;
1195  static const G4double ymax = 2.88900e+1;
1196 
1197  do {
1198  u = reps+(1.-2.*reps)*rndmEngineMod->flat();
1199  G4double v = 1.-u ;
1200  G4double v2= v*v;
1201  G4double v4= v2*v2;
1202  G4double v6= v4*v2;
1203  G4double v8= v6*v2;
1204  rej = G4Exp(rp1*u*u+rp2*G4Log(v))*u*v*(1+rp3*v2+rp4*v4+rp5*v6+rp6*v8);
1205  }
1206  // Loop checking, 15-Sept-2015, Vladimir Ivanchenko
1207  while (ymax*rndmEngineMod->flat() > rej && ++count < 1000);
1208  r = rmax*u;
1209  }
1210 
1211  if(r > 0.)
1212  {
1213  // sample Phi using lateral correlation
1214  // and r/rmax - (Phi-phi) correlation
1215  // v = Phi-phi = acos(latcorr/(r*sth))
1216  // from SS simulation f(v) = a0*exp(-a1*v)+a2
1217  G4double v, rej;
1218  G4int count(0);
1219 
1220  static const G4double a1phi[10] = {4.508e-1,6.132e-1,1.180e+0,1.357e+0,1.582e+0,
1221  1.863e+0,2.217e+0,2.739e+0,3.652e+0,5.149e+0};
1222  static const G4double a2phi[10] = {1.556e+0,3.571e-1,6.480e-2,3.964e-2,2.733e-2,
1223  1.571e-2,8.546e-3,3.308e-3,6.464e-4,4.194e-5};
1224  static const G4double a3phi[10] = {3.631e-2,1.300e-1,8.899e-1,8.396e-1,7.362e-1,
1225  6.782e-1,5.613e-1,4.568e-1,4.296e-1,4.067e-1};
1226  static const G4double gmphi[10] = {3.8455,1.5860,2.0190,1.4924,1.1711,
1227  1.0158,1.0086,1.0034,1.0007,1.0001};
1228 
1229  G4int iphi = u*10.;
1230  if(iphi < 0) { iphi = 0; }
1231  else if(iphi > 9) { iphi = 9; }
1232  G4double a1 = a1phi[iphi];
1233  G4double a2 = a2phi[iphi];
1234  G4double a3 = a3phi[iphi];
1235  G4double rejmax = gmphi[iphi];
1236  G4double wphi = 1-G4Exp(-0.5*a1*CLHEP::pi);
1237 
1238  do {
1239  v = -2*G4Log(1-wphi*rndmEngineMod->flat())/a1;
1240  G4double exav = G4Exp(-0.5*a1*v);
1241  rej = (1+G4Exp(a3*G4Log(v)))*(exav*exav+a2)/(exav*rejmax);
1242  }
1243  // Loop checking, 5-March-2018, Vladimir Ivanchenko
1244  while (rndmEngineMod->flat() > rej && ++count < 1000);
1245 
1246  G4double Phi = (rndmEngineMod->flat() < 0.5) ? phi+v : phi-v;
1247 
1248  fDisplacement.set(r*std::cos(Phi),r*std::sin(Phi),0.0);
1249  }
1250 }
1251 
1252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
Float_t x
Definition: compare.C:6
void set(double x, double y, double z)
G4UrbanMscModel(const G4String &nam="UrbanMsc")
G4double Randomizetlimit()
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double facsafety
Definition: G4VMscModel.hh:177
Double_t xx
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:184
const G4ParticleDefinition * positron
static constexpr double MeV
Definition: G4SIunits.hh:214
G4bool LateralDisplacementAlg96() const
virtual G4ThreeVector & SampleScattering(const G4ThreeVector &, G4double safety) override
Float_t y1[n_points_granero]
Definition: compare.C:5
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:245
G4StepPoint * GetPreStepPoint() const
G4double dtrl
Definition: G4VMscModel.hh:179
static constexpr double nm
Definition: G4SIunits.hh:112
static constexpr double mm
Definition: G4SIunits.hh:115
virtual void StartTracking(G4Track *) override
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:255
G4double ComputeSafety(const G4ThreeVector &position, G4double limit=DBL_MAX)
Definition: G4VMscModel.hh:237
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4LossTableManager * theManager
Float_t y
Definition: compare.C:6
G4double GetRadlen() const
Definition: G4Material.hh:221
const char * p
Definition: xmltok.h:285
void SampleDisplacement(G4double sinTheta, G4double phi)
static constexpr double hbarc
G4double facgeom
Definition: G4VMscModel.hh:176
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:38
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:268
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:455
static constexpr double classic_electr_radius
G4double G4Log(G4double x)
Definition: G4Log.hh:230
static constexpr double um
Definition: G4SIunits.hh:113
G4double GetProductionCut(G4int index) const
const G4MaterialCutsCouple * couple
G4double SampleCosineTheta(G4double trueStepLength, G4double KineticEnergy)
static constexpr double proton_mass_c2
G4double facrange
Definition: G4VMscModel.hh:175
G4ParticleChangeForMSC * fParticleChange
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
G4StepStatus GetStepStatus() const
TString part[npart]
Definition: Style.C:32
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
G4ParticleDefinition * GetDefinition() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
virtual double flat()=0
TCanvas * c2
Definition: plot_hist.C:75
virtual ~G4UrbanMscModel()
void SetParticle(const G4ParticleDefinition *)
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:283
static constexpr double electron_mass_c2
G4bool latDisplasment
Definition: G4VMscModel.hh:188
const G4ThreeVector & GetPosition() const
virtual G4double ComputeGeomPathLength(G4double truePathLength) override
static constexpr double MeV
static constexpr double twopi
Definition: G4SIunits.hh:76
CLHEP::HepRandomEngine * rndmEngineMod
Float_t d
G4StepStatus
Definition: G4StepStatus.hh:49
static G4Positron * Positron()
Definition: G4Positron.cc:94
static constexpr double eV
Definition: G4SIunits.hh:215
G4double skin
Definition: G4VMscModel.hh:178
static constexpr double eV
const G4Step * GetStep() const
static constexpr double twopi
Definition: SystemOfUnits.h:55
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:340
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX) override
int G4lrint(double ad)
Definition: templates.hh:151
int G4int
Definition: G4Types.hh:78
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=nullptr)
Definition: G4VMscModel.cc:91
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:185
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:227
G4double GetSafety() const
G4double GetZeffective() const
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4double GetKineticEnergy() const
G4double SimpleScattering(G4double xmeanth, G4double x2meanth)
static G4LossTableManager * Instance()
G4ProductionCuts * GetProductionCuts() const
G4double currentRadLength
virtual G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep) override
const G4Material * GetMaterial() const
G4double currentKinEnergy
void SampleDisplacementNew(G4double sinTheta, G4double phi)
static const G4double eps
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:303
static constexpr double keV
static constexpr double Bohr_radius
const G4DynamicParticle * GetDynamicParticle() const
static G4EmParameters * Instance()
static constexpr double pi
Definition: SystemOfUnits.h:54
virtual G4double ComputeTrueStepLength(G4double geomStepLength) override
const G4ParticleDefinition * particle
G4double Z23(G4int Z) const
Definition: G4Pow.hh:137
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
static constexpr double barn
Definition: SystemOfUnits.h:85