Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4Mag_SpinEqRhs.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4Mag_SpinEqRhs.cc 95822 2016-02-26 08:04:51Z gcosmo $
28 //
29 // This is the standard right-hand side for equation of motion.
30 // This version of the right-hand side includes the three components
31 // of the particle's spin.
32 //
33 // J. Apostolakis, February 8th, 1999
34 // P. Gumplinger, February 8th, 1999
35 // D. Cote-Ahern, P. Gumplinger, April 11th, 2001
36 //
37 // --------------------------------------------------------------------
38 
39 #include "G4Mag_SpinEqRhs.hh"
40 #include "G4PhysicalConstants.hh"
41 #include "G4SystemOfUnits.hh"
42 #include "G4MagneticField.hh"
43 #include "G4ThreeVector.hh"
44 
46  : G4Mag_EqRhs( MagField ), charge(0.), mass(0.), magMoment(0.),
47  spin(0.), omegac(0.), anomaly(0.0011659208), beta(0.), gamma(0.)
48 {
49 }
50 
52 {
53 }
54 
55 void
57  G4double MomentumXc,
58  G4double particleMass)
59 {
60  G4Mag_EqRhs::SetChargeMomentumMass( particleCharge, MomentumXc, mass);
61 
62  charge = particleCharge.GetCharge();
63  mass = particleMass;
64  magMoment = particleCharge.GetMagneticDipoleMoment();
65  spin = particleCharge.GetSpin();
66 
68 
70 
71  G4double g_BMT;
72  if ( spin != 0. ) g_BMT = (std::abs(magMoment)/muB)/spin;
73  else g_BMT = 2.;
74 
75  anomaly = (g_BMT - 2.)/2.;
76 
77  G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass));
78  beta = MomentumXc/E;
79  gamma = E/mass;
80 }
81 
82 void
84  const G4double B[3],
85  G4double dydx[] ) const
86 {
87  G4double momentum_mag_square = sqr(y[3]) + sqr(y[4]) + sqr(y[5]);
88  G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square );
89  G4double cof = FCof()*inv_momentum_magnitude;
90 
91  dydx[0] = y[3] * inv_momentum_magnitude; // (d/ds)x = Vx/V
92  dydx[1] = y[4] * inv_momentum_magnitude; // (d/ds)y = Vy/V
93  dydx[2] = y[5] * inv_momentum_magnitude; // (d/ds)z = Vz/V
94 
95  if (charge == 0.) {
96  dydx[3] = 0.;
97  dydx[4] = 0.;
98  dydx[5] = 0.;
99  } else {
100  dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ; // Ax = a*(Vy*Bz - Vz*By)
101  dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ; // Ay = a*(Vz*Bx - Vx*Bz)
102  dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ; // Az = a*(Vx*By - Vy*Bx)
103  }
104 
105  G4ThreeVector u(y[3], y[4], y[5]);
106  u *= inv_momentum_magnitude;
107 
108  G4ThreeVector BField(B[0],B[1],B[2]);
109 
110  G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
111  G4double ucb = (anomaly+1./gamma)/beta;
112 
113  // Initialise the values of dydx that we do not update.
114  dydx[6] = dydx[7] = dydx[8] = 0.0;
115 
116  G4ThreeVector Spin(y[9],y[10],y[11]);
117 
118  G4double pcharge;
119  if (charge == 0.) pcharge = 1.;
120  else pcharge = charge;
121 
122  G4ThreeVector dSpin(0.,0.,0.);
123  if (Spin.mag2() != 0.) {
124  dSpin = pcharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u)));
125  }
126 
127  dydx[ 9] = dSpin.x();
128  dydx[10] = dSpin.y();
129  dydx[11] = dSpin.z();
130 
131  return ;
132 }
static constexpr double hbar_Planck
G4double GetSpin() const
Float_t y
Definition: compare.C:6
double z() const
Double_t beta
void SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double mass)
G4double FCof() const
Definition: G4Mag_EqRhs.hh:84
static constexpr double c_squared
double G4double
Definition: G4Types.hh:76
double mag2() const
Hep3Vector cross(const Hep3Vector &) const
static constexpr double eplus
Definition: G4SIunits.hh:199
static constexpr double c_light
G4Mag_SpinEqRhs(G4MagneticField *MagField)
void EvaluateRhsGivenB(const G4double y[], const G4double B[3], G4double dydx[]) const
G4double GetMagneticDipoleMoment() const
double x() const
G4double GetCharge() const
T sqr(const T &x)
Definition: templates.hh:145
double y() const
double B(double temperature)
virtual void SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double mass)
Definition: G4Mag_EqRhs.cc:56