Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4LegendrePolynomial.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 
26 #include "G4ios.hh"
27 #include "G4LegendrePolynomial.hh"
28 #include "G4Pow.hh"
29 #include "G4Exp.hh"
30 #include "G4Log.hh"
31 
32 using namespace std;
33 
35 {
36  if(order >= fCoefficients.size()) BuildUpToOrder(order);
37  if(order >= fCoefficients.size() ||
38  i/2 >= fCoefficients[order].size() ||
39  (i%2) != order %2) return 0;
40  return fCoefficients[order][i/2];
41 }
42 
44 {
45  // Call EvalAssocLegendrePoly with m=0
46  return (EvalAssocLegendrePoly(order,0,x));
47 }
48 
50  map<G4int, map<G4int, G4double> >* cache)
51 {
52  // Calculate P_l^m(x).
53  // If cache ptr is non-null, use cache[l][m] if it exists, otherwise compute
54  // P_l^m(x) and cache it in that position. The cache speeds up calculations
55  // where many P_l^m computations are need at the same value of x.
56 
57  if(l<0 || m<-l || m>l) return 0;
58  G4Pow* g4pow = G4Pow::GetInstance();
59 
60  // Use non-log factorial for low l, m: it is more efficient until
61  // l and m get above 10 or so.
62  // FIXME: G4Pow doesn't check whether the argument gets too large,
63  // which is unsafe! Max is 512; VI: It is assume that Geant4 does not
64  // need higher order
65  if(m<0) {
66  G4double value = (m%2 ? -1. : 1.) * EvalAssocLegendrePoly(l, -m, x);
67  if(l < 10) return value * g4pow->factorial(l+m)/g4pow->factorial(l-m);
68  else { return value * G4Exp(g4pow->logfactorial(l+m) - g4pow->logfactorial(l-m));
69  }
70  }
71 
72  // hard-code the first few orders for speed
73  if(l==0) return 1;
74  if(l==1) {
75  if(m==0) return x;
76  /*m==1*/ return -sqrt(1.-x*x);
77  }
78  if(l<5) {
79  G4double x2 = x*x;
80  if(l==2) {
81  if(m==0) return 0.5*(3.*x2 - 1.);
82  if(m==1) return -3.*x*sqrt(1.-x2);
83  /*m==2*/ return 3.*(1.-x2);
84  }
85  if(l==3) {
86  if(m==0) return 0.5*(5.*x*x2 - 3.*x);
87  if(m==1) return -1.5*(5.*x2-1.)*sqrt(1.-x2);
88  if(m==2) return 15.*x*(1.-x2);
89  /*m==3*/ return -15.*(1.-x2)*sqrt(1.-x2);
90  }
91  if(l==4) {
92  if(m==0) return 0.125*(35.*x2*x2 - 30.*x2 + 3.);
93  if(m==1) return -2.5*(7.*x*x2-3.*x)*sqrt(1.-x2);
94  if(m==2) return 7.5*(7.*x2-1.)*(1.-x2);
95  if(m==3) return -105.*x*(1.-x2)*sqrt(1.-x2);
96  /*m==4*/ return 105.*(1. - 2.*x2 + x2*x2);
97  }
98  }
99 
100  // Easy special cases
101  // FIXME: G4Pow doesn't check whether the argument gets too large, which is unsafe! Max is 512.
102  if(m==l) return (l%2 ? -1. : 1.) *
103  G4Exp(g4pow->logfactorial(2*l) - g4pow->logfactorial(l)) *
104  G4Exp(G4Log((1.-x*x)*0.25)*0.5*G4double(l));
105  if(m==l-1) return x*(2.*G4double(m)+1.)*EvalAssocLegendrePoly(m,m,x);
106 
107  // See if we have this value cached.
108  if(cache != NULL && cache->count(l) > 0 && (*cache)[l].count(m) > 0) {
109  return (*cache)[l][m];
110  }
111 
112  // Otherwise calculate recursively
113  G4double value = (x*G4double(2*l-1)*EvalAssocLegendrePoly(l-1,m,x) -
114  (G4double(l+m-1))*EvalAssocLegendrePoly(l-2,m,x))/G4double(l-m);
115 
116  // If we are working with a cache, cache this value.
117  if(cache != NULL) {
118  (*cache)[l][m] = value;
119  }
120  return value;
121 }
122 
124 {
125  if(orderMax > 30) {
126  G4cout << "G4LegendrePolynomial::GetCoefficient(): "
127  << "I refuse to make a Legendre Polynomial of order "
128  << orderMax << G4endl;
129  return;
130  }
131  while(fCoefficients.size() < orderMax+1) { /* Loop checking, 30-Oct-2015, G.Folger */
132  size_t order = fCoefficients.size();
133  fCoefficients.resize(order+1);
134  if(order <= 1) fCoefficients[order].push_back(1.);
135  else {
136  for(size_t iCoeff = 0; iCoeff < order+1; ++iCoeff) {
137  if((order % 2) == (iCoeff % 2)) {
138  G4double coeff = 0;
139  if(iCoeff <= order-2) coeff -= fCoefficients[order-2][iCoeff/2]*G4double(order-1);
140  if(iCoeff > 0) coeff += fCoefficients[order-1][(iCoeff-1)/2]*G4double(2*order-1);
141  coeff /= G4double(order);
142  fCoefficients[order].push_back(coeff);
143  }
144  }
145  }
146  }
147 }
148 
Float_t x
Definition: compare.C:6
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
G4double factorial(G4int Z) const
Definition: G4Pow.hh:247
G4double EvalLegendrePoly(G4int order, G4double x)
#define G4endl
Definition: G4ios.hh:61
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double EvalAssocLegendrePoly(G4int l, G4int m, G4double x, std::map< G4int, std::map< G4int, G4double > > *cache=NULL)
static constexpr double m
Definition: G4SIunits.hh:129
double G4double
Definition: G4Types.hh:76
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
const XML_Char int const XML_Char * value
Definition: expat.h:331
G4double logfactorial(G4int Z) const
Definition: G4Pow.hh:252
int G4int
Definition: G4Types.hh:78
void BuildUpToOrder(size_t order)
Definition: G4Pow.hh:56
G4GLOB_DLL std::ostream G4cout
Float_t x2[n_points_geant4]
Definition: compare.C:26
G4double GetCoefficient(size_t i, size_t order)