Geant4
v4-10.4-release
메인 페이지
관련된 페이지
모듈
네임스페이스
클래스
파일들
파일 목록
파일 멤버
모두
클래스
네임스페이스들
파일들
함수
변수
타입정의
열거형 타입
열거형 멤버
Friends
매크로
그룹들
페이지들
source
global
HEPNumerics
include
G4GaussJacobiQ.hh
이 파일의 문서화 페이지로 가기
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4GaussJacobiQ.hh 67970 2013-03-13 10:10:06Z gcosmo $
28
//
29
// Class description:
30
//
31
// Roots of ortogonal polynoms and corresponding weights are calculated based on
32
// iteration method (by bisection Newton algorithm). Constant values for initial
33
// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
34
// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
35
// 10, and 22 .
36
//
37
// ---------------------------------------------------------------------------
38
//
39
// Constructor for Gauss-Jacobi integration method.
40
//
41
// G4GaussJacobiQ( function pFunction,
42
// G4double alpha,
43
// G4double beta,
44
// G4int nJacobi )
45
//
46
// ----------------------------------------------------------------------------
47
//
48
// Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
49
// from minus unit to plus unit .
50
//
51
// G4double Integral() const
52
53
// ------------------------------- HISTORY -------------------------------------
54
//
55
// 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
56
57
#ifndef G4GAUSSJACOBIQ_HH
58
#define G4GAUSSJACOBIQ_HH
59
60
#include "
G4VGaussianQuadrature.hh
"
61
62
class
G4GaussJacobiQ
:
public
G4VGaussianQuadrature
63
{
64
public
:
65
// Constructor
66
67
G4GaussJacobiQ
(
function
pFunction,
68
G4double
alpha
,
69
G4double
beta
,
70
G4int
nJacobi ) ;
71
72
// Methods
73
74
G4double
Integral
()
const
;
75
76
private
:
77
78
G4GaussJacobiQ
(
const
G4GaussJacobiQ
&);
79
G4GaussJacobiQ
&
operator=
(
const
G4GaussJacobiQ
&);
80
};
81
82
#endif
G4GaussJacobiQ::Integral
G4double Integral() const
Definition:
G4GaussJacobiQ.cc:152
beta
Double_t beta
Definition:
TG43_relative_dose.C:15
G4VGaussianQuadrature.hh
G4double
double G4double
Definition:
G4Types.hh:76
G4VGaussianQuadrature
Definition:
G4VGaussianQuadrature.hh:66
G4GaussJacobiQ
Definition:
G4GaussJacobiQ.hh:62
alpha
static const G4double alpha
Definition:
G4LivermoreBremsstrahlungModel.cc:79
G4GaussJacobiQ::operator=
G4GaussJacobiQ & operator=(const G4GaussJacobiQ &)
G4GaussJacobiQ::G4GaussJacobiQ
G4GaussJacobiQ(function pFunction, G4double alpha, G4double beta, G4int nJacobi)
Definition:
G4GaussJacobiQ.cc:37
G4int
int G4int
Definition:
G4Types.hh:78
다음에 의해 생성됨 :
1.8.5