Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4FSALBogackiShampine45.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Bogacki-Shampine - 8 - 5(4) FSAL implementation by Somnath Banerjee
27 // Supervision / code review: John Apostolakis
28 //
29 // Sponsored by Google in Google Summer of Code 2015.
30 //
31 // First version: 26 May 2015
32 //
33 // History
34 // -----------------------------
35 // Created by Somnath on 26 May 2015
36 //
38 // Renamed to G4 standard naming
39 // Plan is that this source file / class will be merged with the updated
40 // BogackiShampine45 class, which contains improvements (May 2016)
41 // J. Apostolakis, 31 May 2016
43 //
44 //
45 //This is the source file of BogackiShampine45 class containing the
46 //definition of the stepper() method that evaluates one step in
47 //field propagation.
48 //The Butcher table of the Bogacki-Shampine-8-4-5 method is as follows :
49 //
50 //0 |
51 //1/6 | 1/6
52 //2/9 | 2/27 4/27
53 //3/7 | 183/1372 -162/343 1053/1372
54 //2/3 | 68/297 -4/11 42/143 1960/3861
55 //3/4 | 597/22528 81/352 63099/585728 58653/366080 4617/20480
56 //1 | 174197/959244 -30942/79937 8152137/19744439 666106/1039181 -29421/29068 482048/414219
57 //1 | 587/8064 0 4440339/15491840 24353/124800 387/44800 2152/5985 7267/94080
58 //-------------------------------------------------------------------------------------------------------------------
59 // 587/8064 0 4440339/15491840 24353/124800 387/44800 2152/5985 7267/94080 0
60 // 2479/34992 0 123/416 612941/3411720 43/1440 2272/6561 79937/1113912 3293/556956
61 
62 #include <cassert>
63 
65 #include "G4LineSection.hh"
66 
69 
70 //Constructor
72  G4int noIntegrationVariables,
73  G4bool primary)
74  : G4VFSALIntegrationStepper(EqRhs, noIntegrationVariables),
75  fLastStepLength( -1.0 ), fAuxStepper( nullptr )
76 {
77  const G4int numberOfVariables = noIntegrationVariables;
78 
79  //New Chunk of memory being created for use by the stepper
80 
81  //aki - for storing intermediate RHS
82  ak2 = new G4double[numberOfVariables];
83  ak3 = new G4double[numberOfVariables];
84  ak4 = new G4double[numberOfVariables];
85  ak5 = new G4double[numberOfVariables];
86  ak6 = new G4double[numberOfVariables];
87  ak7 = new G4double[numberOfVariables];
88  ak8 = new G4double[numberOfVariables];
89 
90  ak9 = new G4double[numberOfVariables];
91  ak10 = new G4double[numberOfVariables];
92  ak11 = new G4double[numberOfVariables];
93  DyDx = new G4double[numberOfVariables];
94 
95  assert ( GetNumberOfStateVariables() >= 8 );
96  const G4int numStateVars = std::max(noIntegrationVariables,
98 
99  // Must ensure space extra 'state' variables exists - i.e. yIn[7]
100  yTemp = new G4double[numStateVars];
101  yIn = new G4double[numStateVars] ;
102 
103  fLastInitialVector = new G4double[numStateVars] ;
104  fLastFinalVector = new G4double[numStateVars] ;
105  fLastDyDx = new G4double[numberOfVariables]; // Only derivatives
106 
107  fMidVector = new G4double[numStateVars];
108  fMidError = new G4double[numStateVars];
109 
110  pseudoDydx_for_DistChord = new G4double[numberOfVariables];
111 
112  fMidVector = new G4double[numberOfVariables];
113  fMidError = new G4double[numberOfVariables];
114  if( primary )
115  {
116  fAuxStepper = new G4FSALBogackiShampine45(EqRhs, numberOfVariables,
117  !primary);
118  }
119  if( ! fPreparedConstants )
121 }
122 
123 
124 //Destructor
126  //clear all previously allocated memory for stepper and DistChord
127  delete[] ak2;
128  delete[] ak3;
129  delete[] ak4;
130  delete[] ak5;
131  delete[] ak6;
132  delete[] ak7;
133  delete[] ak8;
134  delete[] ak9;
135  delete[] ak10;
136  delete[] ak11;
137  delete[] DyDx;
138  delete[] yTemp;
139  delete[] yIn;
140 
141  delete[] fLastInitialVector;
142  delete[] fLastFinalVector;
143  delete[] fLastDyDx;
144  delete[] fMidVector;
145  delete[] fMidError;
146 
147  delete fAuxStepper;
148 
149  delete[] pseudoDydx_for_DistChord;
150 }
151 
152 
153 //Stepper :
154 
155 // Passing in the value of yInput[],the first time dydx[] and Step length
156 // Giving back yOut and yErr arrays for output and error respectively
157 
159  const G4double dydx[],
160  G4double Step,
161  G4double yOut[],
162  G4double yErr[],
163  G4double nextDydx[])
164 {
165  G4int i;
166 
167  //The various constants defined on the basis of butcher tableu
168  const G4double //G4double - only once
169 
170  b21 = 1.0/6.0 ,
171  b31 = 2.0/27.0 , b32 = 4.0/27.0,
172 
173  b41 = 183.0/1372.0 , b42 = -162.0/343.0, b43 = 1053.0/1372.0,
174 
175  b51 = 68.0/297.0, b52 = -4.0/11.0,
176  b53 = 42.0/143.0, b54 = 1960.0/3861.0,
177 
178  b61 = 597.0/22528.0, b62 = 81.0/352.0,
179  b63 = 63099.0/585728.0, b64 = 58653.0/366080.0,
180  b65 = 4617.0/20480.0,
181 
182  b71 = 174197.0/959244.0, b72 = -30942.0/79937.0,
183  b73 = 8152137.0/19744439.0, b74 = 666106.0/1039181.0,
184  b75 = -29421.0/29068.0, b76 = 482048.0/414219.0,
185 
186  b81 = 587.0/8064.0, b82 = 0.0,
187  b83 = 4440339.0/15491840.0, b84 = 24353.0/124800.0,
188  b85 = 387.0/44800.0, b86 = 2152.0/5985.0,
189  b87 = 7267.0/94080.0,
190 
191 
192 // c1 = 2479.0/34992.0,
193 // c2 = 0.0,
194 // c3 = 123.0/416.0,
195 // c4 = 612941.0/3411720.0,
196 // c5 = 43.0/1440.0,
197 // c6 = 2272.0/6561.0,
198 // c7 = 79937.0/1113912.0,
199 // c8 = 3293.0/556956.0,
200 
201  //For the embedded higher order method only the difference of values
202  // taken and is used directly later instead of defining the last row
203  // of butcher table in a separate set of variables and taking the
204  // difference there
205 
206 
207  dc1 = b81 - 2479.0/34992.0 ,
208  dc2 = 0.0,
209  dc3 = b83 - 123.0/416.0 ,
210  dc4 = b84 - 612941.0/3411720.0,
211  dc5 = b85 - 43.0/1440.0,
212  dc6 = b86 - 2272.0/6561.0,
213  dc7 = b87 - 79937.0/1113912.0,
214  dc8 = -3293.0/556956.0; //end of declaration
215 
216 
217  const G4int numberOfVariables= this->GetNumberOfVariables();
218 
219  // The number of variables to be integrated over
220  yOut[7] = yTemp[7] = yIn[7];
221  // Saving yInput because yInput and yOut can be aliases for same array
222 
223  for(i=0;i<numberOfVariables;i++)
224  {
225  yIn[i]=yInput[i];
226  DyDx[i] = dydx[i];
227  }
228 
229 
230  // RightHandSide(yIn, dydx) ;
231  // 1st Step - Not doing, getting passed
232 
233  for(i=0;i<numberOfVariables;i++)
234  {
235  yTemp[i] = yIn[i] + b21*Step*DyDx[i] ;
236  }
237  RightHandSide(yTemp, ak2) ; // 2nd Step
238 
239  for(i=0;i<numberOfVariables;i++)
240  {
241  yTemp[i] = yIn[i] + Step*(b31*DyDx[i] + b32*ak2[i]) ;
242  }
243  RightHandSide(yTemp, ak3) ; // 3rd Step
244 
245  for(i=0;i<numberOfVariables;i++)
246  {
247  yTemp[i] = yIn[i] + Step*(b41*DyDx[i] + b42*ak2[i] + b43*ak3[i]) ;
248  }
249  RightHandSide(yTemp, ak4) ; // 4th Step
250 
251  for(i=0;i<numberOfVariables;i++)
252  {
253  yTemp[i] = yIn[i] + Step*(b51*DyDx[i] + b52*ak2[i] + b53*ak3[i] +
254  b54*ak4[i]) ;
255  }
256  RightHandSide(yTemp, ak5) ; // 5th Step
257 
258  for(i=0;i<numberOfVariables;i++)
259  {
260  yTemp[i] = yIn[i] + Step*(b61*DyDx[i] + b62*ak2[i] + b63*ak3[i] +
261  b64*ak4[i] + b65*ak5[i]) ;
262  }
263  RightHandSide(yTemp, ak6) ; // 6th Step
264 
265  for(i=0;i<numberOfVariables;i++)
266  {
267  yTemp[i] = yIn[i] + Step*(b71*DyDx[i] + b72*ak2[i] + b73*ak3[i] +
268  b74*ak4[i] + b75*ak5[i] + b76*ak6[i]);
269  }
270  RightHandSide(yTemp, ak7); //7th Step
271 
272  for(i=0;i<numberOfVariables;i++)
273  {
274  yOut[i] = yIn[i] + Step*(b81*DyDx[i] + b82*ak2[i] + b83*ak3[i] +
275  b84*ak4[i] + b85*ak5[i] + b86*ak6[i] +
276  b87*ak7[i]);
277  }
278  RightHandSide(yOut, ak8); //8th Step - Final one Using FSAL
279 
280 
281  for(i=0;i<numberOfVariables;i++)
282  {
283 
284  yErr[i] = Step*(dc1*DyDx[i] + dc2*ak2[i] + dc3*ak3[i] + dc4*ak4[i] +
285  dc5*ak5[i] + dc6*ak6[i] + dc7*ak7[i] + dc8*ak8[i]) ;
286 
287 
288  //FSAL stepper : Must pass the last DyDx for the next step, here ak8
289  nextDydx[i] = ak8[i];
290 
291  // Store Input and Final values, for possible use in calculating chord
292  fLastInitialVector[i] = yIn[i] ;
293  fLastFinalVector[i] = yOut[i];
294  fLastDyDx[i] = DyDx[i];
295 
296  }
297 
298  fLastStepLength = Step;
299 
300  return ;
301 }
302 //
303 //G4double* G4FSALBogackiShampine45::getLastDydx(){
304 // return ak8;
305 //}
306 
307 //The following has not been tested
308 
309 //The DistChord() function fot the class - must define it here.
311 {
312  G4double distLine, distChord;
313  G4ThreeVector initialPoint, finalPoint, midPoint;
314 
315 
316  // Store last initial and final points (they will be overwritten in self-Stepper call!)
317  initialPoint = G4ThreeVector( fLastInitialVector[0],
319  finalPoint = G4ThreeVector( fLastFinalVector[0],
321 
322  // Do half a step using StepNoErr
323 
326 
327  midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);
328 
329  // Use stored values of Initial and Endpoint + new Midpoint to evaluate
330  // distance of Chord
331 
332 
333  if (initialPoint != finalPoint)
334  {
335  distLine = G4LineSection::Distline( midPoint, initialPoint, finalPoint );
336  distChord = distLine;
337  }
338  else
339  {
340  distChord = (midPoint-initialPoint).mag();
341  }
342  return distChord;
343 }
344 
345 // ---------------------------------------------------------------------------------------
346 
348 {
349  // --------------------------------------------------------
350  // COEFFICIENTS FOR INTERPOLANT bi WITH 11 STAGES
351  // --------------------------------------------------------
352 
353  // Initialise all values of G4double bi[12][7]
354  for(int i=1; i<12; i++){
355  for(int j=1; j<7; j++){
356  bi[i][j] = 0.0 ;
357  }
358  }
359 
360  bi[1][6] = -12134338393.0/1050809760.0 ,
361  bi[1][5] = -1620741229.0/50038560.0 ,
362  bi[1][4] = -2048058893.0/59875200.0 ,
363  bi[1][3] = -87098480009.0/5254048800.0 ,
364  bi[1][2] = -11513270273.0/3502699200.0 ,
365  //
366  bi[3][6] = -33197340367.0/1218433216.0 ,
367  bi[3][5] = -539868024987.0/6092166080.0 ,
368  bi[3][4] = -39991188681.0/374902528.0 ,
369  bi[3][3] = -69509738227.0/1218433216.0 ,
370  bi[3][2] = -29327744613.0/2436866432.0 ,
371  //
372  bi[4][6] = -284800997201.0/19905339168.0 ,
373  bi[4][5] = -7896875450471.0/165877826400.0 ,
374  bi[4][4] = -333945812879.0/5671036800.0 ,
375  bi[4][3] = -16209923456237.0/497633479200.0 ,
376  bi[4][2] = -2382590741699.0/331755652800.0 ,
377  //
378  bi[5][6] = -540919.0/741312.0 ,
379  bi[5][5] = -103626067.0/43243200.0 ,
380  bi[5][4] = -633779.0/211200.0 ,
381  bi[5][3] = -32406787.0/18532800.0 ,
382  bi[5][2] = -36591193.0/86486400.0 ,
383  //
384  bi[6][6] = 7157998304.0/374350977.0 ,
385  bi[6][5] = 30405842464.0/623918295.0 ,
386  bi[6][4] = 183022264.0/5332635.0 ,
387  bi[6][3] = -3357024032.0/1871754885.0 ,
388  bi[6][2] = -611586736.0/89131185.0 ,
389  //
390  bi[7][6] = -138073.0/9408.0 ,
391  bi[7][5] = -719433.0/15680.0 ,
392  bi[7][4] = -1620541.0/31360.0 ,
393  bi[7][3] = -385151.0/15680.0 ,
394  bi[7][2] = -65403.0/15680.0 ,
395  //
396  bi[8][6] = 1245.0/64.0 ,
397  bi[8][5] = 3991.0/64.0 ,
398  bi[8][4] = 4715.0/64.0 ,
399  bi[8][3] = 2501.0/64.0 ,
400  bi[8][2] = 149.0/16.0 ,
401  bi[8][1] = 1.0 ,
402  //
403  bi[9][6] = 55.0/3.0 ,
404  bi[9][5] = 71.0 ,
405  bi[9][4] = 103.0 ,
406  bi[9][3] = 199.0/3.0 ,
407  bi[9][2] = 16.0 ,
408  //
409  bi[10][6] = -1774004627.0/75810735.0 ,
410  bi[10][5] = -1774004627.0/25270245.0 ,
411  bi[10][4] = -26477681.0/359975.0 ,
412  bi[10][3] = -11411880511.0/379053675.0 ,
413  bi[10][2] = -423642896.0/126351225.0 ,
414  //
415  bi[11][6] = 35.0 ,
416  bi[11][5] = 105.0 ,
417  bi[11][4] = 117.0 ,
418  bi[11][3] = 59.0 ,
419  bi[11][2] = 12.0 ;
420 }
421 
422 // ---------------------------------------------------------------------------------------
423 
425  const G4double dydx[],
426  G4double yOut[],
427  G4double Step,
428  G4double tau
429  )
430 {
431  const G4double
432  a91 = 455.0/6144.0 ,
433  a92 = 0.0 ,
434  a93 = 10256301.0/35409920.0 ,
435  a94 = 2307361.0/17971200.0 ,
436  a95 = -387.0/102400.0 ,
437  a96 = 73.0/5130.0 ,
438  a97 = -7267.0/215040.0 ,
439  a98 = 1.0/32.0 ,
440 
441  a101 = -837888343715.0/13176988637184.0 ,
442  a102 = 30409415.0/52955362.0 ,
443  a103 = -48321525963.0/759168069632.0 ,
444  a104 = 8530738453321.0/197654829557760.0 ,
445  a105 = 1361640523001.0/1626788720640.0 ,
446  a106 = -13143060689.0/38604458898.0 ,
447  a107 = 18700221969.0/379584034816.0 ,
448  a108 = -5831595.0/847285792.0 ,
449  a109 = -5183640.0/26477681.0 ,
450 
451  a111 = 98719073263.0/1551965184000.0 ,
452  a112 = 1307.0/123552.0 ,
453  a113 = 4632066559387.0/70181753241600.0 ,
454  a114 = 7828594302389.0/382182512025600.0 ,
455  a115 = 40763687.0/11070259200.0 ,
456  a116 = 34872732407.0/224610586200.0 ,
457  a117 = -2561897.0/30105600.0 ,
458  a118 = 1.0/10.0 ,
459  a119 = -1.0/10.0 ,
460  a1110 = -1403317093.0/11371610250.0 ;
461 
462  const G4int numberOfVariables= this->GetNumberOfVariables();
463 
464  // Saving yInput because yInput and yOut can be aliases for same array
465  for(int i=0;i<numberOfVariables;i++)
466  {
467  yIn[i]=yInput[i];
468  }
469 
470  // The number of variables to be integrated over
471  yOut[7] = yTemp[7] = yIn[7];
472 
473  // calculating extra stages
474  for(int i=0; i<numberOfVariables; i++){
475  yTemp[i] = yIn[i] + Step*(a91*dydx[i] + a92*ak2[i] + a93*ak3[i] +
476  a94*ak4[i] + a95*ak5[i] + a96*ak6[i] +
477  a97*ak7[i] + a98*ak8[i] );
478  }
479 
481 
482  for(int i=0; i<numberOfVariables; i++){
483  yTemp[i] = yIn[i] + Step*(a101*dydx[i] + a102*ak2[i] + a103*ak3[i] +
484  a104*ak4[i] + a105*ak5[i] + a106*ak6[i] +
485  a107*ak7[i] + a108*ak8[i] + a109*ak9[i] );
486  }
487 
489 
490  for(int i=0; i<numberOfVariables; i++){
491  yTemp[i] = yIn[i] + Step*(a111*dydx[i] + a112*ak2[i] + a113*ak3[i] +
492  a114*ak4[i] + a115*ak5[i] + a116*ak6[i] +
493  a117*ak7[i] + a118*ak8[i] + a119*ak9[i] +
494  a1110*ak10[i] );
495  }
496 
498 
499  G4double tau0 = tau;
500  // Calculating the polynomials :
501  for(int i=1; i<=11; i++){ //Here i is NOT the coordinate no. , it's stage no.
502  b[i] = 0.0;
503  tau = tau0;
504  for(int j=1; j<=6; j++){
505  b[i] += bi[i][j]*tau;
506  tau*=tau0;
507  }
508  }
509 
510  for(int i=0; i<numberOfVariables; i++){
511  yOut[i] = yIn[i] + Step*(b[1]*dydx[i] + b[2]*ak2[i] + b[3]*ak3[i] +
512  b[4]*ak4[i] + b[5]*ak5[i] + b[6]*ak6[i] +
513  b[7]*ak7[i] + b[8]*ak8[i] + b[9]*ak9[i] +
514  b[10]*ak10[i] + b[11]*ak11[i] );
515  }
516 }
517 
518 
519 
520 
T max(const T t1, const T t2)
brief Return the largest of the two arguments
CLHEP::Hep3Vector G4ThreeVector
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
void RightHandSide(const double y[], double dydx[])
G4FSALBogackiShampine45 * fAuxStepper
G4int GetNumberOfVariables() const
void interpolate(const G4double yInput[], const G4double dydx[], G4double yOut[], G4double Step, G4double tau)
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[], G4double nextDydx[])
G4FSALBogackiShampine45(G4EquationOfMotion *EqRhs, G4int numberOfVariables=6, G4bool primary=true)
int G4int
Definition: G4Types.hh:78
G4int GetNumberOfStateVariables() const
Definition: Step.hh:41