Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4DNAPTBExcitationModel.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Authors: S. Meylan and C. Villagrasa (IRSN, France)
27 // Models come from
28 // M. Bug et al, Rad. Phys and Chem. 130, 459-479 (2017)
29 //
30 
32 #include "G4SystemOfUnits.hh"
33 #include "G4DNAChemistryManager.hh"
35 
37  const G4String& nam)
38  : G4VDNAModel(nam, applyToMaterial)
39 {
40  verboseLevel= 0;
41  // Verbosity scale:
42  // 0 = nothing
43  // 1 = warning for energy non-conservation
44  // 2 = details of energy budget
45  // 3 = calculation of cross sections, file openings, sampling of atoms
46  // 4 = entering in methods
47 
48  // initialisation of mean energy loss for each material
49  tableMeanEnergyPTB["THF"] = 8.01*eV;
50  tableMeanEnergyPTB["PY"] = 7.61*eV;
51  tableMeanEnergyPTB["PU"] = 7.61*eV;
52  tableMeanEnergyPTB["TMP"] = 8.01*eV;
53 
54  if( verboseLevel>0 )
55  {
56  G4cout << "PTB excitation model is constructed " << G4endl;
57  }
58 }
59 
60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
61 
63 {
64 
65 }
66 
67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
68 
70  const G4DataVector& /*cuts*/, G4ParticleChangeForGamma*)
71 {
72  if (verboseLevel > 3)
73  G4cout << "Calling G4DNAPTBExcitationModel::Initialise()" << G4endl;
74 
75  G4double scaleFactor = 1e-16*cm*cm;
76  G4double scaleFactorBorn = (1.e-22 / 3.343) * m*m;
77 
79 
80  //*******************************************************
81  // Cross section data
82  //*******************************************************
83 
84  if(particle == electronDef)
85  {
86  G4String particleName = particle->GetParticleName();
87 
88  AddCrossSectionData("THF",
89  particleName,
90  "dna/sigma_excitation_e-_PTB_THF",
91  scaleFactor);
92  SetLowELimit("THF", particleName, 9.*eV);
93  SetHighELimit("THF", particleName, 1.*keV);
94 
96  particleName,
97  "dna/sigma_excitation_e-_PTB_PY",
98  scaleFactor);
99  SetLowELimit("PY", particleName, 9.*eV);
100  SetHighELimit("PY", particleName, 1.*keV);
101 
102  AddCrossSectionData("PU",
103  particleName,
104  "dna/sigma_excitation_e-_PTB_PU",
105  scaleFactor);
106  SetLowELimit("PU", particleName, 9.*eV);
107  SetHighELimit("PU", particleName, 1.*keV);
108 
109  AddCrossSectionData("TMP",
110  particleName,
111  "dna/sigma_excitation_e-_PTB_TMP",
112  scaleFactor);
113  SetLowELimit("TMP", particleName, 9.*eV);
114  SetHighELimit("TMP", particleName, 1.*keV);
115 
116  AddCrossSectionData("G4_WATER",
117  particleName,
118  "dna/sigma_excitation_e_born",
119  scaleFactorBorn);
120  SetLowELimit("G4_WATER", particleName, 9.*eV);
121  SetHighELimit("G4_WATER", particleName, 1.*keV);
122 
123  // DNA materials
124  //
125  AddCrossSectionData("backbone_THF",
126  particleName,
127  "dna/sigma_excitation_e-_PTB_THF",
128  scaleFactor*33./30);
129  SetLowELimit("backbone_THF", particleName, 9.*eV);
130  SetHighELimit("backbone_THF", particleName, 1.*keV);
131 
132  AddCrossSectionData("cytosine_PY",
133  particleName,
134  "dna/sigma_excitation_e-_PTB_PY",
135  scaleFactor*42./30);
136  SetLowELimit("cytosine_PY", particleName, 9.*eV);
137  SetHighELimit("cytosine_PY", particleName, 1.*keV);
138 
139  AddCrossSectionData("thymine_PY",
140  particleName,
141  "dna/sigma_excitation_e-_PTB_PY",
142  scaleFactor*48./30);
143  SetLowELimit("thymine_PY", particleName, 9.*eV);
144  SetHighELimit("thymine_PY", particleName, 1.*keV);
145 
146  AddCrossSectionData("adenine_PU",
147  particleName,
148  "dna/sigma_excitation_e-_PTB_PU",
149  scaleFactor*50./44);
150  SetLowELimit("adenine_PU", particleName, 9.*eV);
151  SetHighELimit("adenine_PU", particleName, 1.*keV);
152 
153  AddCrossSectionData("guanine_PU",
154  particleName,
155  "dna/sigma_excitation_e-_PTB_PU",
156  scaleFactor*56./44);
157  SetLowELimit("guanine_PU", particleName, 9.*eV);
158  SetHighELimit("guanine_PU", particleName, 1.*keV);
159 
160  AddCrossSectionData("backbone_TMP",
161  particleName,
162  "dna/sigma_excitation_e-_PTB_TMP",
163  scaleFactor*33./50);
164  SetLowELimit("backbone_TMP", particleName, 9.*eV);
165  SetHighELimit("backbone_TMP", particleName, 1.*keV);
166  }
167 
168  //*******************************************************
169  // Load data
170  //*******************************************************
171 
173 
174  //*******************************************************
175  // Verbose
176  //*******************************************************
177 
178  if( verboseLevel>0 )
179  {
180  G4cout << "PTB excitation model is initialized " << G4endl;
181  }
182 }
183 
184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
185 
187  const G4String& materialName,
188  const G4ParticleDefinition* particleDefinition,
189  G4double ekin,
190  G4double /*emin*/,
191  G4double /*emax*/)
192 {
193  if (verboseLevel > 3)
194  G4cout << "Calling CrossSectionPerVolume() of G4DNAPTBExcitationModel" << G4endl;
195 
196  // Get the name of the current particle
197  G4String particleName = particleDefinition->GetParticleName();
198 
199  // initialise variables
200  G4double lowLim = 0;
201  G4double highLim = 0;
202  G4double sigma=0;
203 
204  // Get the low energy limit for the current particle
205  lowLim = GetLowELimit(materialName, particleName);
206 
207  // Get the high energy limit for the current particle
208  highLim = GetHighELimit(materialName, particleName);
209 
210  // Check that we are in the correct energy range
211  if (ekin >= lowLim && ekin < highLim)
212  {
213  // Get the map with all the data tables
214  TableMapData* tableData = GetTableData();
215 
216  // Retrieve the cross section value
217  sigma = (*tableData)[materialName][particleName]->FindValue(ekin);
218 
219  if (verboseLevel > 2)
220  {
221  G4cout << "__________________________________" << G4endl;
222  G4cout << "°°° G4DNAPTBExcitationModel - XS INFO START" << G4endl;
223  G4cout << "°°° Kinetic energy(eV)=" << ekin/eV << " particle : " << particleName << G4endl;
224  G4cout << "°°° Cross section per "<< materialName <<" molecule (cm^2)=" << sigma/cm/cm << G4endl;
225  G4cout << "°°° G4DNAPTBExcitationModel - XS INFO END" << G4endl;
226  }
227 
228  }
229 
230  // Return the cross section value
231  return sigma;
232 }
233 
234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
235 
236 void G4DNAPTBExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
237  const G4MaterialCutsCouple* /*couple*/,
238  const G4String& materialName,
239  const G4DynamicParticle* aDynamicParticle,
240  G4ParticleChangeForGamma* particleChangeForGamma,
241  G4double /*tmin*/,
242  G4double /*tmax*/)
243 {
244  if (verboseLevel > 3)
245  G4cout << "Calling SampleSecondaries() of G4DNAPTBExcitationModel" << G4endl;
246 
247  // Get the incident particle kinetic energy
248  G4double k = aDynamicParticle->GetKineticEnergy();
249 
250  if(materialName!="G4_WATER")
251  {
252  // Retrieve the excitation energy for the current material
253  G4double excitationEnergy = tableMeanEnergyPTB[materialName];
254 
255  // Calculate the new energy of the particle
256  G4double newEnergy = k - excitationEnergy;
257 
258  // Check that the new energy is above zero before applying it the particle.
259  // Otherwise, do nothing.
260  if (newEnergy > 0)
261  {
262  particleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
263  particleChangeForGamma->SetProposedKineticEnergy(newEnergy);
264  particleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
265  }
266  }
267  else
268  {
269  const G4String& particleName = aDynamicParticle->GetDefinition()->GetParticleName();
270 
271  G4int level = RandomSelectShell(k,particleName, materialName);
272  G4double excitationEnergy = waterStructure.ExcitationEnergy(level);
273  G4double newEnergy = k - excitationEnergy;
274 
275  if (newEnergy > 0)
276  {
277  particleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
278  particleChangeForGamma->SetProposedKineticEnergy(newEnergy);
279  particleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
280  }
281 
282  const G4Track * theIncomingTrack = particleChangeForGamma->GetCurrentTrack();
284  level,
285  theIncomingTrack);
286  }
287 }
void SetHighELimit(const G4String &material, const G4String &particle, G4double lim)
SetHighEnergyLimit.
Definition: G4VDNAModel.hh:169
static constexpr double keV
Definition: G4SIunits.hh:216
#define G4endl
Definition: G4ios.hh:61
const G4ThreeVector & GetMomentumDirection() const
const G4String & GetParticleName() const
virtual ~G4DNAPTBExcitationModel()
~G4DNAPTBExcitationModel Destructor
G4double GetHighELimit(const G4String &material, const G4String &particle)
GetHighEnergyLimit.
Definition: G4VDNAModel.hh:153
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void AddCrossSectionData(G4String materialName, G4String particleName, G4String fileCS, G4String fileDiffCS, G4double scaleFactor)
AddCrossSectionData Method used during the initialization of the model class to add a new material...
Definition: G4VDNAModel.cc:58
void LoadCrossSectionData(const G4String &particleName)
LoadCrossSectionData Method to loop on all the registered materials in the model and load the corresp...
Definition: G4VDNAModel.cc:75
static constexpr double m
Definition: G4SIunits.hh:129
double G4double
Definition: G4Types.hh:76
G4double GetLowELimit(const G4String &material, const G4String &particle)
GetLowEnergyLimit.
Definition: G4VDNAModel.hh:161
G4ParticleDefinition * GetDefinition() const
G4DNAWaterExcitationStructure waterStructure
void SetLowELimit(const G4String &material, const G4String &particle, G4double lim)
SetLowEnergyLimit.
Definition: G4VDNAModel.hh:177
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4String &materialName, const G4DynamicParticle *, G4ParticleChangeForGamma *particleChangeForGamma, G4double tmin, G4double tmax)
SampleSecondaries If the model is selected for the ModelInterface then the SampleSecondaries method w...
static constexpr double eV
Definition: G4SIunits.hh:215
const G4Track * GetCurrentTrack() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:89
TableMapData * GetTableData()
GetTableData.
Definition: G4VDNAModel.hh:193
int G4int
Definition: G4Types.hh:78
G4DNAPTBExcitationModel(const G4String &applyToMaterial="all", const G4ParticleDefinition *p=0, const G4String &nam="DNAPTBExcitationModel")
G4DNAPTBExcitationModel Constructor.
G4double GetKineticEnergy() const
static constexpr double cm
Definition: G4SIunits.hh:119
G4GLOB_DLL std::ostream G4cout
G4int RandomSelectShell(G4double k, const G4String &particle, const G4String &materialName)
RandomSelectShell Method to randomely select a shell from the data table uploaded. The size of the table (number of columns) is used to determine the total number of possible shells.
Definition: G4VDNAModel.cc:182
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4String &materialName, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
CrossSectionPerVolume Retrieve the cross section corresponding to the current material, particle and energy.
MapMeanEnergy tableMeanEnergyPTB
map: [materialName]=energyValue
The G4VDNAModel class.
Definition: G4VDNAModel.hh:49
virtual void Initialise(const G4ParticleDefinition *particle, const G4DataVector &=*(new G4DataVector()), G4ParticleChangeForGamma *fpChangeForGamme=nullptr)
Initialise Set the materials for which the model can be used and defined the energy limits...
std::map< G4String, std::map< G4String, G4DNACrossSectionDataSet *, std::less< G4String > > > TableMapData
Definition: G4VDNAModel.hh:183
static G4DNAChemistryManager * Instance()