Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4DNAPTBAugerModel.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Authors: S. Meylan and C. Villagrasa (IRSN, France)
27 // Models come from
28 // M. Bug et al, Rad. Phys and Chem. 130, 459-479 (2017)
29 //
30 
31 #include "G4DNAPTBAugerModel.hh"
32 #include "G4PhysicalConstants.hh"
33 #include "G4SystemOfUnits.hh"
34 #include "Randomize.hh"
35 #include "G4Electron.hh"
36 
37 #include "G4Material.hh"
38 
39 using namespace std;
40 
41 G4DNAPTBAugerModel::G4DNAPTBAugerModel(const G4String& modelAugerName): modelName(modelAugerName)
42 {
43  // To inform the user that the Auger model is enabled
44  G4cout << modelName <<" is constructed" << G4endl;
45 }
46 
48 {
49  if( verboseLevel>0 ) G4cout << modelName <<" is deleted" << G4endl;
50 }
51 
53 {
54  verboseLevel = 0;
55 
56  if( verboseLevel>0 )
57  {
58  G4cout << "PTB Auger model is initialised " << G4endl;
59  }
60 
61 }
62 
63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64 
65 void G4DNAPTBAugerModel::ComputeAugerEffect(std::vector<G4DynamicParticle*>* fvect, const G4String& materialNameIni, G4double bindingEnergy)
66 {
67  // Rename material if modified NIST material
68  // This is needed when material is obtained from G4MaterialCutsCouple
69  G4String materialName = materialNameIni;
70  if(materialName.find("_MODIFIED")){
71  materialName = materialName.substr(0,materialName.size()-9);
72  }
73 
74  // check if there is a k-shell ionisation and find the ionised atom
75  G4int atomId(0);
76 
77  atomId = DetermineIonisedAtom(atomId, materialName, bindingEnergy);
78 
79  if(atomId!=0)
80  {
82 
83  if(kineticEnergy<0)
84  {
85  G4cerr<<"**************************"<<G4endl;
86  G4cerr<<"FatalError. Auger kineticEnergy: "<<kineticEnergy<<G4endl;
87  exit(EXIT_FAILURE);
88  }
89 
90  if(atomId==1 || atomId==2 || atomId==3)
91  {
92  GenerateAugerWithRandomDirection(fvect, kineticEnergy);
93  }
94  else if(atomId==4)
95  {
96  GenerateAugerWithRandomDirection(fvect, kineticEnergy);
97  GenerateAugerWithRandomDirection(fvect, kineticEnergy);
98  }
99  }
100 }
101 
102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
103 
105 {
106  if(materialName=="THF" || materialName=="backbone_THF"){
107  if(bindingEnergy==305.07){
108  atomId=1; //"carbon";
109  }
110  else if(bindingEnergy==557.94){
111  atomId=2; //"oxygen";
112  }
113  }
114  else if(materialName=="PY" || materialName=="PU"
115  || materialName=="cytosine_PY" || materialName=="thymine_PY"
116  || materialName=="adenine_PU" || materialName=="guanine_PU"
117  )
118  {
119  if(bindingEnergy==307.52){
120  atomId=1; //"carbon";
121  }
122  else if(bindingEnergy==423.44){
123  atomId=4; //"nitrogen";
124  }
125  }
126  else if(materialName=="TMP"|| materialName=="backbone_TMP"){
127  if(bindingEnergy==209.59 || bindingEnergy==152.4)
128  atomId=3; //"carbonTMP";
129  }
130 
131  return atomId;
132 }
133 
134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
135 
137 {
139 
140  if(atomId==2) // oxygen
141  {
142  kineticEnergy = 495*eV;
143  }
144  else
145  {
146  G4double f1, f2, f3, g1, g2, Y;
147 
148  Y = G4UniformRand();
149 
150  if(atomId == 1){ // carbon
151  f1 = -7.331e-2;
152  f2 = -3.306e-5;
153  f3 = 2.433e0;
154  g1 = 4.838e-1;
155  g2 = 3.886e0;
156  }
157  else if(atomId == 4){ // nitrogen
158  f1 = -7.518e-2;
159  f2 = 1.178e-4;
160  f3 = 2.600e0;
161  g1 = 4.639e-1;
162  g2 = 3.770e0;
163  }
164  else// if(atomId == 3) // carbon_TMP
165  {
166  f1 = -5.700e-2;
167  f2 = 1.200e-4;
168  f3 = 2.425e0;
169  g1 = 5.200e-1;
170  g2 = 2.560e0;
171  }
172 
173  kineticEnergy = pow(10, f1*pow( abs( log10(Y) ) , g1) + f2*pow( abs( log10(Y) ) , g2) + f3 )*eV;
174  }
175 
176  return kineticEnergy;
177 }
178 
179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
180 
182 {
183  minElectronEnergy = cut;
184 }
185 
186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
187 
189 {
190  // Isotropic angular distribution for the outcoming e-
191  G4double newcosTh = 1.-2.*G4UniformRand();
192  G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh);
193  G4double newPhi = twopi*G4UniformRand();
194 
195  G4double xDir = newsinTh*std::sin(newPhi);
196  G4double yDir = newsinTh*std::cos(newPhi);
197  G4double zDir = newcosTh;
198 
199  G4ThreeVector ElectronDirection(xDir,yDir,zDir);
200 
201  // generation of new particle
202  G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(), ElectronDirection, kineticEnergy) ;
203  fvect->push_back(dp);
204 }
void ComputeAugerEffect(std::vector< G4DynamicParticle * > *fvect, const G4String &materialNameIni, G4double bindingEnergy)
ComputeAugerEffect Main method to be called by the ionisation model.
#define G4endl
Definition: G4ios.hh:61
Float_t Y
virtual ~G4DNAPTBAugerModel()
~G4DNAPTBAugerModel Destructor
Float_t f2
G4double CalculAugerEnergyFor(G4int atomId)
CalculAugerEnergyFor.
Float_t f3
double G4double
Definition: G4Types.hh:76
#define G4UniformRand()
Definition: Randomize.hh:53
static constexpr double twopi
Definition: G4SIunits.hh:76
static constexpr double eV
Definition: G4SIunits.hh:215
Float_t f1
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4GLOB_DLL std::ostream G4cerr
G4int DetermineIonisedAtom(G4int atomId, const G4String &materialName, G4double bindingEnergy)
DetermineIonisedAtom.
int G4int
Definition: G4Types.hh:78
const G4String modelName
name of the auger model
G4DNAPTBAugerModel(const G4String &modelName)
G4DNAPTBAugerModel Constructor.
G4GLOB_DLL std::ostream G4cout
virtual void Initialise()
Initialise Set the verbose value.
void GenerateAugerWithRandomDirection(std::vector< G4DynamicParticle * > *fvect, G4double kineticEnergy)
GenerateAugerWithRandomDirection Generates the auger particle.
G4double bindingEnergy(G4int A, G4int Z)
void SetCutForAugerElectrons(G4double cut)
SetCutForAugerElectrons Set the cut for the auger electrons production.