Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4CrystalUnitCell.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 
28 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
29 
30 // 21-04-16, created by E.Bagli
31 
32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
33 
34 #include "G4CrystalUnitCell.hh"
35 #include "G4PhysicalConstants.hh"
36 #include <cmath>
37 
39  G4double sizeB,
40  G4double sizeC,
42  G4double beta,
43  G4double gamma,
44  G4int spacegroup):
45 theSpaceGroup(spacegroup),
46 theSize(G4ThreeVector(sizeA,sizeB,sizeC)),
47 theAngle(G4ThreeVector(alpha,beta,gamma))
48 {
49 
50  nullVec = G4ThreeVector(0.,0.,0.);
54 
58 
59  cosa=std::cos(alpha), cosb=std::cos(beta), cosg=std::cos(gamma);
60  sina=std::sin(alpha), sinb=std::sin(beta), sing=std::sin(gamma);
61 
62  cosar = (cosb*cosg-cosa)/(sinb*sing);
63  cosbr = (cosa*cosg-cosb)/(sina*sing);
64  cosgr = (cosa*cosb-cosg)/(sina*sinb);
65 
67  theRecVolume = 1. / theVolume;
68 
69  theRecSize[0] = sizeB * sizeC * sina / theVolume;
70  theRecSize[1] = sizeC * sizeA * sinb / theVolume;
71  theRecSize[2] = sizeA * sizeB * sing / theVolume;
72 
73  theRecAngle[0] = std::acos(cosar);
74  theRecAngle[1] = std::acos(cosbr);
75  theRecAngle[2] = std::acos(cosgr);
76 
77  G4double x3,y3,z3;
78 
80  case Amorphous:
81  break;
82  case Cubic: // Cubic, C44 set
83  break;
84  case Tetragonal:
85  break;
86  case Orthorhombic:
87  break;
88  case Rhombohedral:
89  theUnitBasis[1].rotateZ(gamma-CLHEP::halfpi); // X-Y opening angle
90  // Z' axis computed by hand to get both opening angles right
91  // X'.Z' = cos(alpha), Y'.Z' = cos(beta), solve for Z' components
92  x3=cosa, y3=(cosb-cosa*cosg)/sing, z3=std::sqrt(1.-x3*x3-y3*y3);
93  theUnitBasis[2] = G4ThreeVector(x3, y3, z3).unit();
94  break;
95  case Monoclinic:
96  theUnitBasis[2].rotateX(beta-CLHEP::halfpi); // Z-Y opening angle
97  break;
98  case Triclinic:
99  theUnitBasis[1].rotateZ(gamma-CLHEP::halfpi); // X-Y opening angle
100  // Z' axis computed by hand to get both opening angles right
101  // X'.Z' = cos(alpha), Y'.Z' = cos(beta), solve for Z' components
102  x3=cosa, y3=(cosb-cosa*cosg)/sing, z3=std::sqrt(1.-x3*x3-y3*y3);
103  theUnitBasis[2] = G4ThreeVector(x3, y3, z3).unit();
104  break;
105  case Hexagonal: // Tetragonal, C16=0
106  theUnitBasis[1].rotateZ(30.*CLHEP::deg); // X-Y opening angle
107  break;
108  default:
109  break;
110  }
111 
112  for(auto i:{0,1,2}){
113  theBasis[i] = theUnitBasis[i] * theSize[i];
115  }
116 
117  // Initialize sgInfo
118  /* at first some initialization for SgInfo */
119  /*
120  const T_TabSgName *tsgn = NULL;
121 
122  SgInfo.MaxList = 192;
123  SgInfo.ListSeitzMx = malloc( SgInfo.MaxList * sizeof(*SgInfo.ListSeitzMx) );
124 
125  // no list info needed here
126  SgInfo.ListRotMxInfo = NULL;
127  tsgn = FindTabSgNameEntry(SchoenfliesSymbols[theSpaceGroup], 'A');
128 
129  // initialize SgInfo struct
130  InitSgInfo( &SgInfo );
131  SgInfo.TabSgName = tsgn;
132  if ( tsgn ){
133  SgInfo.GenOption = 1;
134  }
135 
136  ParseHallSymbol( SchoenfliesSymbols[theSpaceGroup], &SgInfo );
137  CompleteSgInfo( &SgInfo );
138  Set_si( &SgInfo );
139  */
140 
141 }
142 
143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
144 
146 
147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
148 
150 
151  if( aGroup >= 1 && aGroup <= 2 ) {return Triclinic;}
152  else if(aGroup >= 3 && aGroup <= 15 ) {return Monoclinic;}
153  else if(aGroup >= 16 && aGroup <= 74 ) {return Orthorhombic;}
154  else if(aGroup >= 75 && aGroup <= 142) {return Tetragonal;}
155  else if(aGroup == 146 || aGroup == 148 ||
156  aGroup == 155 || aGroup == 160 ||
157  aGroup == 161 || aGroup == 166 ||
158  aGroup == 167) {return Rhombohedral;}
159  else if(aGroup >= 143 && aGroup <= 167) {return Hexagonal;}
160  else if(aGroup >= 168 && aGroup <= 194) {return Hexagonal;}
161  else if(aGroup >= 195 && aGroup <= 230) {return Cubic;}
162 
163  return Amorphous;
164 }
165 
166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
167 /*
168 theBravaisLatticeType G4CrystalUnitCell::GetBravaisLattice(G4int aGroup){
169  ;
170 }
171 */
172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
173 
175  return (idx>=0 && idx<3 ? theUnitBasis[idx] : nullVec);
176 }
177 
178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
179 
181  return (idx>=0 && idx<3 ? theBasis[idx] : nullVec);
182 }
183 
184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
185 
187  return (idx>=0 && idx<3 ? theRecUnitBasis[idx] : nullVec);
188 }
189 
190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
191 
193  return (idx>=0 && idx<3 ? theRecBasis[idx] : nullVec);
194 }
195 
196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
197 
199  // Z' axis computed by hand to get both opening angles right
200  // X'.Z' = cos(alpha), Y'.Z' = cos(beta), solve for Z' components
201  G4double x3=cosa, y3=(cosb-cosa*cosg)/sing, z3=std::sqrt(1.-x3*x3-y3*y3);
202  return G4ThreeVector(x3, y3, z3).unit();
203 }
204 
205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
206 
207 G4bool G4CrystalUnitCell::FillAtomicUnitPos(G4ThreeVector& pos, std::vector<G4ThreeVector>& vecout){
208  // Just for testing the infrastructure
209  G4ThreeVector aaa = pos;
210  vecout.push_back(aaa);
211  vecout.push_back(G4ThreeVector(2.,5.,3.));
212  return true;
213 }
214 
215 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
216 
217 G4bool G4CrystalUnitCell::FillAtomicPos(G4ThreeVector& posin, std::vector<G4ThreeVector>& vecout){
218  FillAtomicUnitPos(posin,vecout);
219  for(auto &vec:vecout){
220  vec.setX(vec.x()*theSize[0]);
221  vec.setY(vec.y()*theSize[1]);
222  vec.setZ(vec.z()*theSize[2]);
223  }
224  return true;
225 }
226 
227 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
228 
230  switch (GetLatticeSystem()) {
231  case Amorphous:
232  return FillAmorphous(Cij);
233  break;
234  case Cubic: // Cubic, C44 set
235  return FillCubic(Cij);
236  break;
237  case Tetragonal:
238  return FillTetragonal(Cij);
239  break;
240  case Orthorhombic:
241  return FillOrthorhombic(Cij);
242  break;
243  case Rhombohedral:
244  return FillRhombohedral(Cij);
245  break;
246  case Monoclinic:
247  return FillMonoclinic(Cij);
248  break;
249  case Triclinic:
250  return FillTriclinic(Cij);
251  break;
252  case Hexagonal: // Tetragonal, C16=0
253  return FillHexagonal(Cij);
254  break;
255  default:
256  break;
257  }
258 
259  return false;
260 }
261 
262 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
263 
265  Cij[3][3] = 0.5*(Cij[0][0]-Cij[0][1]);
266  return true;
267 }
268 
269 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
270 
272  G4double C11=Cij[0][0], C12=Cij[0][1], C44=Cij[3][3];
273 
274  for (size_t i=0; i<6; i++) {
275  for (size_t j=i; j<6; j++) {
276  if (i<3 && j<3) Cij[i][j] = (i==j) ? C11 : C12;
277  else if (i==j && i>=3) Cij[i][i] = C44;
278  else Cij[i][j] = 0.;
279  }
280  }
281 
282  ReflectElReduced(Cij);
283 
284  return (C11!=0. && C12!=0. && C44!=0.);
285 }
286 
287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
288 
290  G4double C11=Cij[0][0], C12=Cij[0][1], C13=Cij[0][2], C16=Cij[0][5];
291  G4double C33=Cij[2][2], C44=Cij[3][3], C66=Cij[5][5];
292 
293  Cij[1][1] = C11; // Copy small number of individual elements
294  Cij[1][2] = C13;
295  Cij[1][5] = -C16;
296  Cij[4][4] = C44;
297 
298  ReflectElReduced(Cij);
299 
300  // NOTE: Do not test for C16 != 0., to allow calling from Hexagonal
301  return (C11!=0. && C12!=0. && C13!=0. && C33!=0. && C44!=0. && C66!=0.);
302 }
303 
304 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
305 
307  // No degenerate elements; just check for all non-zero
308  ReflectElReduced(Cij);
309 
310  G4bool good = true;
311  for (size_t i=0; i<6; i++) {
312  for (size_t j=i+1; j<3; j++)
313  good &= (Cij[i][j] != 0);
314  }
315 
316  return good;
317 }
318 
319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
320 
322  G4double C11=Cij[0][0], C12=Cij[0][1], C13=Cij[0][2], C14=Cij[0][3];
323  G4double C15=Cij[0][4], C33=Cij[2][2], C44=Cij[3][3], C66=0.5*(C11-C12);
324 
325  Cij[1][1] = C11; // Copy small number of individual elements
326  Cij[1][2] = C13;
327  Cij[1][3] = -C14;
328  Cij[1][4] = -C15;
329  Cij[3][5] = -C15;
330  Cij[4][4] = C44;
331  Cij[4][5] = C14;
332 
333  // NOTE: C15 may be zero (c.f. rhombohedral(I) vs. (II))
334  return (C11!=0 && C12!=0 && C13!=0 && C14!=0. &&
335  C33!=0. && C44!=0. && C66!=0.);
336 }
337 
338 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
339 
341  // The monoclinic matrix has 13 independent elements with no degeneracies
342  // Sanity condition is same as orthorhombic, plus C45, C(1,2,3)6
343 
344  return (FillOrthorhombic(Cij) && Cij[0][5]!=0. && Cij[1][5]!=0. &&
345  Cij[2][5] != 0. && Cij[3][4]!=0.);
346 }
347 
348 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
349 
351  // The triclinic matrix has the entire upper half filled (21 elements)
352 
353  ReflectElReduced(Cij);
354 
355  G4bool good = true;
356  for (size_t i=0; i<6; i++) {
357  for (size_t j=i; j<6; j++) good &= (Cij[i][j] != 0);
358  }
359 
360  return good;
361 }
362 
363 
364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
365 
367  Cij[0][5] = 0.;
368  Cij[4][5] = 0.5*(Cij[0][0] - Cij[0][1]);
369  return true;
370 }
371 
372 
373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
374 
376  for (size_t i=1; i<6; i++) {
377  for (size_t j=i+1; j<6; j++) {
378  Cij[j][i] = Cij[i][j];
379  }
380  }
381  return true;
382 }
383 
384 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
385 
387  G4double a = theSize[0], b = theSize[1], c = theSize[2];
388 
389  switch(GetLatticeSystem())
390  {
391  case Amorphous:
392  return 0.;
393  break;
394  case Cubic:
395  return a * a * a;
396  break;
397  case Tetragonal:
398  return a * a * c;
399  break;
400  case Orthorhombic:
401  return a * b * c;
402  break;
403  case Rhombohedral:
404  return a*a*a*std::sqrt(1.-3.*cosa*cosa+2.*cosa*cosa*cosa);
405  break;
406  case Monoclinic:
407  return a*b*c*sinb;
408  break;
409  case Triclinic:
410  return a*b*c*std::sqrt(1.-cosa*cosa-cosb*cosb-cosg*cosg*2.*cosa*cosb*cosg);
411  break;
412  case Hexagonal:
413  return std::sqrt(3.0)/2.*a*a*c;
414  break;
415  default:
416  break;
417  }
418 
419  return 0.;
420 }
421 
422 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
423 
425  G4int k,
426  G4int l){
427 
428  /* Reference:
429  Table 2.4, pag. 65
430 
431  @Inbook{Ladd2003,
432  author="Ladd, Mark and Palmer, Rex",
433  title="Lattices and Space-Group Theory",
434  bookTitle="Structure Determination by X-ray Crystallography",
435  year="2003",
436  publisher="Springer US",
437  address="Boston, MA",
438  pages="51--116",
439  isbn="978-1-4615-0101-5",
440  doi="10.1007/978-1-4615-0101-5_2",
441  url="http://dx.doi.org/10.1007/978-1-4615-0101-5_2"
442  }
443  */
444 
445  G4double a = theSize[0], b = theSize[1], c = theSize[2];
446  G4double a2 = a*a, b2 = b*b, c2 = c*c;
447  G4double h2 = h*h, k2 = k*k, l2 = l*l;
448 
449  G4double cos2a,sin2a,sin2b;
450  G4double R,T;
451 
452  switch(GetLatticeSystem())
453  {
454  case Amorphous:
455  return 0.;
456  break;
457  case Cubic:
458  return a2 / ( h2+k2+l2 );
459  break;
460  case Tetragonal:
461  return 1.0 / ( (h2 + k2)/a2 + l2/c2 );
462  break;
463  case Orthorhombic:
464  return 1.0 / ( h2/a2 + k2/b2 + l2/c2 );
465  break;
466  case Rhombohedral:
467  cos2a=cosa*cosa; sin2a=sina*sina;
468  T = h2+k2+l2+2.*(h*k+k*l+h*l) * ((cos2a-cosa)/sin2a);
469  R = sin2a / (1. - 3*cos2a + 2.*cos2a*cosa);
470  return a*a / (T*R);
471  break;
472  case Monoclinic:
473  sin2b=sinb*sinb;
474  return 1./(1./sin2b * (h2/a2+l2/c2-2*h*l*cosb/(a*c)) + k2/b2);
475  break;
476  case Triclinic:
477  return 1./GetRecIntSp2(h,k,l);
478  break;
479  case Hexagonal:
480  return 1. / ( (4.*(h2+k2+h*k) / (3.*a2)) + l2/c2 );
481  break;
482  default:
483  break;
484  }
485 
486  return 0.;
487 }
488 
489 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
490 
492  G4int k,
493  G4int l){
494  /* Reference:
495  Table 2.4, pag. 65
496 
497  @Inbook{Ladd2003,
498  author="Ladd, Mark and Palmer, Rex",
499  title="Lattices and Space-Group Theory",
500  bookTitle="Structure Determination by X-ray Crystallography",
501  year="2003",
502  publisher="Springer US",
503  address="Boston, MA",
504  pages="51--116",
505  isbn="978-1-4615-0101-5",
506  doi="10.1007/978-1-4615-0101-5_2",
507  url="http://dx.doi.org/10.1007/978-1-4615-0101-5_2"
508  }
509  */
510 
511  G4double a = theRecSize[0], b = theRecSize[1], c = theRecSize[2];
512  G4double a2 = a*a, b2 = b*b, c2 = c*c;
513  G4double h2 = h*h, k2 = k*k, l2 = l*l;
514 
515  switch(GetLatticeSystem())
516  {
517  case Amorphous:
518  return 0.;
519  break;
520  case Cubic:
521  return a2 * (h2+k2+l2);
522  break;
523  case Tetragonal:
524  return (h2+k2)*a2 + l2*c2 ;
525  break;
526  case Orthorhombic:
527  return h2*a2 + k2+b2 + h2*c2;
528  break;
529  case Rhombohedral:
530  return (h2+k2+l2+2.*(h*k+k*l+h*l) * cosar)*a2;
531  break;
532  case Monoclinic:
533  return h2*a2+k2*b2+l2*c2+2.*h*l*a*c*cosbr;
534  break;
535  case Triclinic:
536  return h2*a2+k2*b2+l2*c2+2.*k*l*b*c*cosar+2.*l*h*c*a*cosbr+2.*h*k*a*b*cosgr;
537  break;
538  case Hexagonal:
539  return (h2+k2+h*k)*a2 + l2*c2;
540  break;
541  default:
542  break;
543  }
544 
545  return 0.;
546 }
547 
548 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
549 
551  G4int k1,
552  G4int l1,
553  G4int h2,
554  G4int k2,
555  G4int l2){
556 
557  /* Reference:
558  Table 2.4, pag. 65
559 
560  @Inbook{Kelly2012,
561  author="Anthony A. Kelly and Kevin M. Knowles",
562  title="Appendix 3 Interplanar Spacings and Interplanar Angles",
563  bookTitle="Crystallography and Crystal Defects, 2nd Edition",
564  year="2012",
565  publisher="John Wiley & Sons, Ltd.",
566  isbn="978-0-470-75014-8",
567  doi="10.1002/9781119961468",
568  url="http://onlinelibrary.wiley.com/book/10.1002/9781119961468"
569  }
570  */
571 
572  G4double a = theRecSize[0], b = theRecSize[1], c = theRecSize[2];
573  G4double a2 = a*a, b2 = b*b, c2 = c*c;
574  G4double dsp1dsp2;
575  switch(GetLatticeSystem())
576  {
577  case Amorphous:
578  return 0.;
579  break;
580  case Cubic:
581  return (h1*h2 + k1*k2 + l1+l2) / (std::sqrt(h1*h1 + k1*k1 + l1*l1) * std::sqrt(h2*h2 + k2*k2 + l2*l2));
582  break;
583  case Tetragonal:
584  dsp1dsp2 = std::sqrt(GetIntSp2(h1,k1,l1)*GetIntSp2(h2,k2,l2));
585  return 0. ;
586  break;
587  case Orthorhombic:
588  dsp1dsp2 = std::sqrt(GetIntSp2(h1,k1,l1)*GetIntSp2(h2,k2,l2));
589  return dsp1dsp2 * (h1*h2*a2 + k1*k2*a2 + l1*l2*c2);
590  break;
591  case Rhombohedral:
592  dsp1dsp2 = std::sqrt(GetIntSp2(h1,k1,l1)*GetIntSp2(h2,k2,l2));
593  return dsp1dsp2 * (h1*h2*a2 + k1*k2*b2 + l1*l2*c2+
594  (k1*l2+k2*l1)*b*c*cosar+
595  (h1*l2+h2*l1)*a*c*cosbr+
596  (h1*k2+h2*k1)*a*b*cosgr);
597  break;
598  case Monoclinic:
599  dsp1dsp2 = std::sqrt(GetIntSp2(h1,k1,l1)*GetIntSp2(h2,k2,l2));
600  return dsp1dsp2 * (h1*h2*a2 + k1*k2*b2 + l1*l2*c2+
601  (k1*l2+k2*l1)*b*c*cosar+
602  (h1*l2+h2*l1)*a*c*cosbr+
603  (h1*k2+h2*k1)*a*b*cosgr);
604  break;
605  case Triclinic:
606  dsp1dsp2 = std::sqrt(GetIntSp2(h1,k1,l1)*GetIntSp2(h2,k2,l2));
607  return dsp1dsp2 * (h1*h2*a2 + k1*k2*b2 + l1*l2*c2+
608  (k1*l2+k2*l1)*b*c*cosar+
609  (h1*l2+h2*l1)*a*c*cosbr+
610  (h1*k2+h2*k1)*a*b*cosgr);
611  break;
612  case Hexagonal:
613  dsp1dsp2 = std::sqrt(GetIntSp2(h1,k1,l1)*GetIntSp2(h2,k2,l2));
614  return dsp1dsp2 *( (h1*h2 + k1*k2 + 0.5*(h1*k2+k1*h2))*a2 + l1*l2*c2);
615  break;
616  default:
617  break;
618  }
619 
620  return 0.;
621 }
622 
623 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
624 
G4ThreeVector theBasis[3]
G4bool ReflectElReduced(G4double Cij[6][6]) const
CLHEP::Hep3Vector G4ThreeVector
G4double GetIntSp2(G4int h, G4int k, G4int l)
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
static const G4double pos
G4ThreeVector theUnitBasis[3]
G4bool FillAtomicPos(G4ThreeVector &pos, std::vector< G4ThreeVector > &vecout)
G4bool FillRhombohedral(G4double Cij[6][6]) const
G4double GetIntCosAng(G4int h1, G4int k1, G4int l1, G4int h2, G4int k2, G4int l2)
Hep3Vector & rotateX(double)
Definition: ThreeVector.cc:90
theLatticeSystemType GetLatticeSystem()
G4ThreeVector theRecBasis[3]
Double_t beta
G4bool FillHexagonal(G4double Cij[6][6]) const
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
G4ThreeVector theSize
TCanvas * c2
Definition: plot_hist.C:75
G4bool FillMonoclinic(G4double Cij[6][6]) const
G4ThreeVector theRecUnitBasis[3]
const G4ThreeVector & GetUnitBasis(G4int idx) const
static const G4double alpha
const G4ThreeVector & GetRecUnitBasis(G4int idx) const
Double_t R
G4bool FillCubic(G4double Cij[6][6]) const
const G4ThreeVector & GetRecBasis(G4int idx) const
G4bool FillTriclinic(G4double Cij[6][6]) const
G4ThreeVector theRecSize
Hep3Vector unit() const
Hep3Vector & rotateZ(double)
Definition: ThreeVector.cc:110
G4CrystalUnitCell(G4double sizeA, G4double sizeB, G4double sizeC, G4double alpha, G4double beta, G4double gamma, G4int spacegroup)
TH1F * h2
G4ThreeVector theRecAngle
G4bool FillElReduced(G4double Cij[6][6])
DLL_API const Hep3Vector HepXHat
int G4int
Definition: G4Types.hh:78
G4ThreeVector nullVec
const G4ThreeVector & GetBasis(G4int idx) const
DLL_API const Hep3Vector HepYHat
DLL_API const Hep3Vector HepZHat
static constexpr double deg
G4bool FillOrthorhombic(G4double Cij[6][6]) const
TH1F * h1
theLatticeSystemType
G4double GetRecIntSp2(G4int h, G4int k, G4int l)
G4bool FillTetragonal(G4double Cij[6][6]) const
static constexpr double halfpi
Definition: SystemOfUnits.h:56
G4bool FillAmorphous(G4double Cij[6][6]) const
G4double ComputeCellVolume()
G4ThreeVector GetUnitBasisTrigonal()
G4bool FillAtomicUnitPos(G4ThreeVector &pos, std::vector< G4ThreeVector > &vecout)