Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4ChipsPionPlusInelasticXS.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4ChipsPionPlusInelasticXS for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 // -------------------------------------------------------------------------------------
35 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
36 // pion interactions. Original author: M. Kossov
37 // -------------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4PionPlus.hh"
45 
46 #include "G4Log.hh"
47 #include "G4Exp.hh"
48 #include "G4Pow.hh"
49 
50 // factory
51 #include "G4CrossSectionFactory.hh"
52 //
54 
56 {
57  // Initialization of the
58  lastLEN=0; // Pointer to lastArray of LowEn CS
59  lastHEN=0; // Pointer to lastArray of HighEn CS
60  lastN=0; // The last N of calculated nucleus
61  lastZ=0; // The last Z of calculated nucleus
62  lastP=0.; // Last used in cross section Momentum
63  lastTH=0.; // Last threshold momentum
64  lastCS=0.; // Last value of the Cross Section
65  lastI=0; // The last position in the DAMDB
66  LEN = new std::vector<G4double*>;
67  HEN = new std::vector<G4double*>;
68 }
69 
70 
72 {
73  G4int lens=LEN->size();
74  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
75  delete LEN;
76  G4int hens=HEN->size();
77  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
78  delete HEN;
79 }
80 
81 void
83 {
84  outFile << "G4ChipsPionPlusInelasticXS provides the inelastic cross\n"
85  << "section for pion+ nucleus scattering as a function of incident\n"
86  << "momentum. The cross section is calculated using M. Kossov's\n"
87  << "CHIPS parameterization of cross section data.\n";
88 }
89 
91  const G4Element*,
92  const G4Material*)
93 {
94  return true;
95 }
96 
97 // The main member function giving the collision cross section (P is in IU, CS is in mb)
98 // Make pMom in independent units ! (Now it is MeV)
100  const G4Isotope*,
101  const G4Element*,
102  const G4Material*)
103 {
104  G4double pMom=Pt->GetTotalMomentum();
105  G4int tgN = A - tgZ;
106 
107  return GetChipsCrossSection(pMom, tgZ, tgN, 211);
108 }
109 
110 
112 {
113 
114  G4bool in=false; // By default the isotope must be found in the AMDB
115  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
116  {
117  in = false; // By default the isotope haven't be found in AMDB
118  lastP = 0.; // New momentum history (nothing to compare with)
119  lastN = tgN; // The last N of the calculated nucleus
120  lastZ = tgZ; // The last Z of the calculated nucleus
121  lastI = colN.size(); // Size of the Associative Memory DB in the heap
122  j = 0; // A#0f records found in DB for this projectile
123  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
124  {
125  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
126  {
127  lastI=i; // Remember the index for future fast/last use
128  lastTH =colTH[i]; // The last THreshold (A-dependent)
129  if(pMom<=lastTH)
130  {
131  return 0.; // Energy is below the Threshold value
132  }
133  lastP =colP [i]; // Last Momentum (A-dependent)
134  lastCS =colCS[i]; // Last CrossSect (A-dependent)
135  in = true; // This is the case when the isotop is found in DB
136  // Momentum pMom is in IU ! @@ Units
137  lastCS=CalculateCrossSection(-1,j,211,lastZ,lastN,pMom); // read & update
138  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
139  {
140  lastCS=0.;
141  lastTH=pMom;
142  }
143  break; // Go out of the LOOP
144  }
145  j++; // Increment a#0f records found in DB
146  }
147  if(!in) // This isotope has not been calculated previously
148  {
150  lastCS=CalculateCrossSection(0,j,211,lastZ,lastN,pMom); //calculate & create
151  //if(lastCS>0.) // It means that the AMBD was initialized
152  //{
153 
154  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
155  colN.push_back(tgN);
156  colZ.push_back(tgZ);
157  colP.push_back(pMom);
158  colTH.push_back(lastTH);
159  colCS.push_back(lastCS);
160  //} // M.K. Presence of H1 with high threshold breaks the syncronization
161  return lastCS*millibarn;
162  } // End of creation of the new set of parameters
163  else
164  {
165  colP[lastI]=pMom;
166  colCS[lastI]=lastCS;
167  }
168  } // End of parameters udate
169  else if(pMom<=lastTH)
170  {
171  return 0.; // Momentum is below the Threshold Value -> CS=0
172  }
173  else // It is the last used -> use the current tables
174  {
175  lastCS=CalculateCrossSection(1,j,211,lastZ,lastN,pMom); // Only read and UpdateDB
176  lastP=pMom;
177  }
178  return lastCS*millibarn;
179 }
180 
181 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
183  G4int, G4int targZ, G4int targN, G4double Momentum)
184 {
185  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
186  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
187  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
188  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
189  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
190  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
191  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
192  static const G4int nH=224; // A#of HEN points in lnE
193  static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
194  static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
195  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
196  static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
197  G4double sigma=0.;
198  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
199  //G4double A=targN+targZ; // A of the target
200  if(F<=0) // This isotope was not the last used isotop
201  {
202  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
203  {
204  G4int sync=LEN->size();
205  if(sync<=I) G4cerr<<"*!*G4ChipsPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
206  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
207  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
208  }
209  else // This isotope wasn't calculated before => CREATE
210  {
211  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
212  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
213  // --- Instead of making a separate function ---
214  G4double P=THmiG; // Table threshold in GeV/c
215  for(G4int k=0; k<nL; k++)
216  {
217  lastLEN[k] = CrossSectionLin(targZ, targN, P);
218  P+=dPG;
219  }
220  G4double lP=milPG;
221  for(G4int n=0; n<nH; n++)
222  {
223  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
224  lP+=dlP;
225  }
226  // --- End of possible separate function
227  // *** The synchronization check ***
228  G4int sync=LEN->size();
229  if(sync!=I)
230  {
231  G4cerr<<"***G4ChipsPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
232  <<", N="<<targN<<", F="<<F<<G4endl;
233  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
234  }
235  LEN->push_back(lastLEN); // remember the Low Energy Table
236  HEN->push_back(lastHEN); // remember the High Energy Table
237  } // End of creation of the new set of parameters
238  } // End of parameters udate
239  // =-----------------= NOW the Magic Formula =-------------------------=
240  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
241  else if (Momentum<Pmin) // High Energy region
242  {
243  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
244  }
245  else if (Momentum<Pmax) // High Energy region
246  {
247  G4double lP=G4Log(Momentum);
248  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
249  }
250  else // UHE region (calculation, not frequent)
251  {
252  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
253  sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
254  }
255  if(sigma<0.) return 0.;
256  return sigma;
257 }
258 
259 // Electromagnetic momentum-threshold (in MeV/c)
261 {
262  static const G4double third=1./3.;
263  static const G4double pM = G4PionPlus::PionPlus()->Definition()->GetPDGMass(); // Projectile mass in MeV
264  static const G4double tpM= pM+pM; // Doubled projectile mass (MeV)
265  G4double tA=tZ+tN;
266  if(tZ<.99 || tN<0.) return 0.;
267  else if(tZ==1 && tN==0) return 300.; // A threshold on the free proton
268  //G4double dE=1.263*tZ/(1.+G4Pow::GetInstance()->powA(tA,third));
269  G4double dE=tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); // Safety for diffused edge of the nucleus (QE)
270  G4double tM=931.5*tA;
271  G4double T=dE+dE*(dE/2+pM)/tM;
272  return std::sqrt(T*(tpM+T));
273 }
274 
275 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
277 {
278  G4double lP=G4Log(P);
279  return CrossSectionFormula(tZ, tN, P, lP);
280 }
281 
282 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
284 {
285  G4double P=G4Exp(lP);
286  return CrossSectionFormula(tZ, tN, P, lP);
287 }
288 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
290  G4double P, G4double lP)
291 {
292  G4double sigma=0.;
293  if(tZ==1 && !tN) // PiPlus-Proton interaction from G4QuasiElRatios
294  {
295  G4double ld=lP-3.5;
296  G4double ld2=ld*ld;
297  G4double p2=P*P;
298  G4double p4=p2*p2;
299  G4double sp=std::sqrt(P);
300  G4double lm=lP-.32;
301  G4double md=lm*lm+.04;
302  G4double El=(.0557*ld2+2.4+6./sp)/(1.+3./p4);
303  G4double To=(.3*ld2+22.3+5./sp)/(1.+1./p4);
304  sigma=(To-El)+.1/md;
305  }
306  else if(tZ==1 && tN==1) // pimp_tot
307  {
308  G4double p2=P*P;
309  G4double d=lP-2.7;
310  G4double f=lP+1.25;
311  G4double gg=lP-.017;
312  sigma=(.55*d*d+38.+23./std::sqrt(P))/(1.+.3/p2/p2)+18./(f*f+.1089)+.02/(gg*gg+.0025);
313  }
314  else if(tZ<97 && tN<152) // General solution
315  {
316  G4double d=lP-4.2;
317  G4double p2=P*P;
318  G4double p4=p2*p2;
319  G4double a=tN+tZ; // A of the target
320  G4double al=G4Log(a);
321  G4double sa=std::sqrt(a);
322  G4double ssa=std::sqrt(sa);
323  G4double a2=a*a;
324  G4double c=41.*G4Exp(al*.68)*(1.+44./a2)/(1.+8./a)/(1.+200./a2/a2);
325  G4double f=290.*ssa/(1.+34./a/ssa);
326  G4double gg=-1.32-al*.043;
327  G4double u=lP-gg;
328  G4double h=al*(.4-.055*al);
329  G4double r=.01+a2*5.E-8;
330  sigma=(c+d*d)/(1.+(.2-.009*sa)/p4)+f/(u*u+h*h)/(1.+r/p2);
331  }
332  else
333  {
334  G4cerr<<"-Warning-G4ChipsPiPlusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
335  sigma=0.;
336  }
337  if(sigma<0.) return 0.;
338  return sigma;
339 }
340 
342 {
343  if(DX<=0. || N<2)
344  {
345  G4cerr<<"***G4ChipsPionPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
346  return Y[0];
347  }
348 
349  G4int N2=N-2;
350  G4double d=(X-X0)/DX;
351  G4int jj=static_cast<int>(d);
352  if (jj<0) jj=0;
353  else if(jj>N2) jj=N2;
354  d-=jj; // excess
355  G4double yi=Y[jj];
356  G4double sigma=yi+(Y[jj+1]-yi)*d;
357 
358  return sigma;
359 }
static const G4double dE
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4double CrossSectionFormula(G4int targZ, G4int targN, G4double P, G4double lP)
std::vector< G4double * > * HEN
#define G4endl
Definition: G4ios.hh:61
Float_t Y
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
G4double CrossSectionLog(G4int targZ, G4int targN, G4double lP)
G4double GetPDGMass() const
G4double G4Log(G4double x)
Definition: G4Log.hh:230
static G4PionPlus * Definition()
Definition: G4PionPlus.cc:52
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
static constexpr double millibarn
Definition: G4SIunits.hh:106
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
**D E S C R I P T I O N
G4double CrossSectionLin(G4int targZ, G4int targN, G4double P)
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:242
virtual void CrossSectionDescription(std::ostream &) const
static const G4double THmin
double A(double temperature)
G4double CalculateCrossSection(G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
Float_t d
static const G4int nL
G4double EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double *Y)
#define G4_DECLARE_XS_FACTORY(cross_section)
G4GLOB_DLL std::ostream G4cerr
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
static double P[]
std::vector< G4double * > * LEN
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
int G4int
Definition: G4Types.hh:78
ifstream in
Definition: comparison.C:7
Char_t n[5]
G4double GetTotalMomentum() const
G4double ThresholdMomentum(G4int targZ, G4int targN)
Float_t X
static const G4int nH