Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4ChipsPionPlusElasticXS.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4ChipsPionPlusElasticXS.cc 109482 2018-04-24 14:47:28Z gcosmo $
28 //
29 //
30 // G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the elastic process.
36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37 // -------------------------------------------------------------------------------
38 
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4PionPlus.hh"
45 #include "G4Nucleus.hh"
46 #include "G4ParticleTable.hh"
47 #include "G4NucleiProperties.hh"
48 #include "G4IonTable.hh"
49 #include "G4Log.hh"
50 #include "G4Exp.hh"
51 #include "G4Pow.hh"
52 
53 // factory
54 #include "G4CrossSectionFactory.hh"
55 //
57 
58 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
59 {
60  lPMin=-8.; // Min tabulated logarithmMomentum(D)
61  lPMax= 8.; // Max tabulated logarithmMomentum(D)
62  dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
63  onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
64  lastSIG=0.; // Last calculated cross section (L)
65  lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
66  lastTM=0.; // Last t_maximum (L)
67  theSS=0.; // TheLastSqSlope of 1st difr.Max(L)
68  theS1=0.; // TheLastMantissa of 1st difr.Max(L)
69  theB1=0.; // TheLastSlope of 1st difruct.Max(L)
70  theS2=0.; // TheLastMantissa of 2nd difr.Max(L)
71  theB2=0.; // TheLastSlope of 2nd difruct.Max(L)
72  theS3=0.; // TheLastMantissa of 3d difr. Max(L)
73  theB3=0.; // TheLastSlope of 3d difruct. Max(L)
74  theS4=0.; // TheLastMantissa of 4th difr.Max(L)
75  theB4=0.; // TheLastSlope of 4th difruct.Max(L)
76  lastTZ=0; // Last atomic number of the target
77  lastTN=0; // Last # of neutrons in the target
78  lastPIN=0.; // Last initialized max momentum
79  lastCST=0; // Elastic cross-section table
80  lastPAR=0; // ParametersForFunctionalCalculation
81  lastSST=0; // E-dep of SqaredSlope of 1st difMax
82  lastS1T=0; // E-dep of mantissa of 1st dif.Max
83  lastB1T=0; // E-dep of the slope of 1st difMax
84  lastS2T=0; // E-dep of mantissa of 2nd difrMax
85  lastB2T=0; // E-dep of the slope of 2nd difMax
86  lastS3T=0; // E-dep of mantissa of 3d difr.Max
87  lastB3T=0; // E-dep of the slope of 3d difrMax
88  lastS4T=0; // E-dep of mantissa of 4th difrMax
89  lastB4T=0; // E-dep of the slope of 4th difMax
90  lastN=0; // The last N of calculated nucleus
91  lastZ=0; // The last Z of calculated nucleus
92  lastP=0.; // LastUsed in cross section Momentum
93  lastTH=0.; // Last threshold momentum
94  lastCS=0.; // Last value of the Cross Section
95  lastI=0; // The last position in the DAMDB
96 }
97 
99 {
100  std::vector<G4double*>::iterator pos;
101  for (pos=CST.begin(); pos<CST.end(); pos++)
102  { delete [] *pos; }
103  CST.clear();
104  for (pos=PAR.begin(); pos<PAR.end(); pos++)
105  { delete [] *pos; }
106  PAR.clear();
107  for (pos=SST.begin(); pos<SST.end(); pos++)
108  { delete [] *pos; }
109  SST.clear();
110  for (pos=S1T.begin(); pos<S1T.end(); pos++)
111  { delete [] *pos; }
112  S1T.clear();
113  for (pos=B1T.begin(); pos<B1T.end(); pos++)
114  { delete [] *pos; }
115  B1T.clear();
116  for (pos=S2T.begin(); pos<S2T.end(); pos++)
117  { delete [] *pos; }
118  S2T.clear();
119  for (pos=B2T.begin(); pos<B2T.end(); pos++)
120  { delete [] *pos; }
121  B2T.clear();
122  for (pos=S3T.begin(); pos<S3T.end(); pos++)
123  { delete [] *pos; }
124  S3T.clear();
125  for (pos=B3T.begin(); pos<B3T.end(); pos++)
126  { delete [] *pos; }
127  B3T.clear();
128  for (pos=S4T.begin(); pos<S4T.end(); pos++)
129  { delete [] *pos; }
130  S4T.clear();
131  for (pos=B4T.begin(); pos<B4T.end(); pos++)
132  { delete [] *pos; }
133  B4T.clear();
134 }
135 
136 void
138 {
139  outFile << "G4ChipsPionPlusElasticXS provides the elastic cross\n"
140  << "section for pion+ nucleus scattering as a function of incident\n"
141  << "momentum. The cross section is calculated using M. Kossov's\n"
142  << "CHIPS parameterization of cross section data.\n";
143 }
144 
146  const G4Element*,
147  const G4Material*)
148 {
149  return true;
150 }
151 
152 // The main member function giving the collision cross section (P is in IU, CS is in mb)
153 // Make pMom in independent units ! (Now it is MeV)
155  const G4Isotope*,
156  const G4Element*,
157  const G4Material*)
158 
159 {
160  G4double pMom=Pt->GetTotalMomentum();
161  G4int tgN = A - tgZ;
162 
163  return GetChipsCrossSection(pMom, tgZ, tgN, 211);
164 }
165 
167 {
168  G4double pEn=pMom;
169  G4bool fCS = false;
170  onlyCS=fCS;
171 
172  G4bool in=false; // By default the isotope must be found in the AMDB
173  lastP = 0.; // New momentum history (nothing to compare with)
174  lastN = tgN; // The last N of the calculated nucleus
175  lastZ = tgZ; // The last Z of the calculated nucleus
176  lastI = colN.size(); // Size of the Associative Memory DB in the heap
177  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
178  { // The nucleus with projPDG is found in AMDB
179  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
180  {
181  lastI=i;
182  lastTH =colTH[i]; // Last THreshold (A-dependent)
183  if(pEn<=lastTH)
184  {
185  return 0.; // Energy is below the Threshold value
186  }
187  lastP =colP [i]; // Last Momentum (A-dependent)
188  lastCS =colCS[i]; // Last CrossSect (A-dependent)
189  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
190  if(lastP == pMom) // Do not recalculate
191  {
192  CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
193  return lastCS*millibarn; // Use theLastCS
194  }
195  in = true; // This is the case when the isotop is found in DB
196  // Momentum pMom is in IU ! @@ Units
197  lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
198  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
199  {
200  lastTH=pEn;
201  }
202  break; // Go out of the LOOP with found lastI
203  }
204  } // End of attampt to find the nucleus in DB
205  if(!in) // This nucleus has not been calculated previously
206  {
208  lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
209  if(lastCS<=0.)
210  {
211  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
212  if(pEn>lastTH)
213  {
214  lastTH=pEn;
215  }
216  }
217  colN.push_back(tgN);
218  colZ.push_back(tgZ);
219  colP.push_back(pMom);
220  colTH.push_back(lastTH);
221  colCS.push_back(lastCS);
222  return lastCS*millibarn;
223  } // End of creation of the new set of parameters
224  else
225  {
226  colP[lastI]=pMom;
227  colCS[lastI]=lastCS;
228  }
229  return lastCS*millibarn;
230 }
231 
232 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
233 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
235  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
236 {
237  G4double pMom=pIU/GeV; // All calculations are in GeV
238  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
239  lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation
240  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
241  {
242  if(F<0) // the AMDB must be loded
243  {
244  lastPIN = PIN[I]; // Max log(P) initialised for this table set
245  lastPAR = PAR[I]; // Pointer to the parameter set
246  lastCST = CST[I]; // Pointer to the total sross-section table
247  lastSST = SST[I]; // Pointer to the first squared slope
248  lastS1T = S1T[I]; // Pointer to the first mantissa
249  lastB1T = B1T[I]; // Pointer to the first slope
250  lastS2T = S2T[I]; // Pointer to the second mantissa
251  lastB2T = B2T[I]; // Pointer to the second slope
252  lastS3T = S3T[I]; // Pointer to the third mantissa
253  lastB3T = B3T[I]; // Pointer to the rhird slope
254  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
255  lastB4T = B4T[I]; // Pointer to the 4-th slope
256  }
257  if(lastLP>lastPIN && lastLP<lPMax)
258  {
259  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
260  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
261  }
262  }
263  else // This isotope wasn't initialized => CREATE
264  {
265  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
266  lastPAR[nLast]=0; // Initialization for VALGRIND
267  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
268  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
269  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
270  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
271  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
272  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
273  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
274  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
275  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
276  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
277  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
278  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
279  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
280  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
281  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
282  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
283  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
284  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
285  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
286  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
287  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
288  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
289  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
290  } // End of creation/update of the new set of parameters and tables
291  // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
292  if(lastLP>lastPIN && lastLP<lPMax)
293  {
294  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
295  }
296  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
297  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
298  {
299  if(lastLP==lastPIN)
300  {
301  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
302  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
303  if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
304  lastSIG = lastCST[blast];
305  if(!onlyCS) // Skip the differential cross-section parameters
306  {
307  theSS = lastSST[blast];
308  theS1 = lastS1T[blast];
309  theB1 = lastB1T[blast];
310  theS2 = lastS2T[blast];
311  theB2 = lastB2T[blast];
312  theS3 = lastS3T[blast];
313  theB3 = lastB3T[blast];
314  theS4 = lastS4T[blast];
315  theB4 = lastB4T[blast];
316  }
317  }
318  else
319  {
320  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
321  G4int blast=static_cast<int>(shift); // the lower bin number
322  if(blast<0) blast=0;
323  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
324  shift-=blast; // step inside the unit bin
325  G4int lastL=blast+1; // the upper bin number
326  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
327  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
328  if(!onlyCS) // Skip the differential cross-section parameters
329  {
330  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
331  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
332  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
333  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
334  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
335  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
336  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
337  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
338  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
339  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
340  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
341  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
342  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
343  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
344  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
345  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
346  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
347  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
348  }
349  }
350  }
351  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
352  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
353  return lastSIG;
354 }
355 
356 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
358  G4int tgZ, G4int tgN)
359 {
360  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
361  static const G4double pwd=2727;
362  const G4int n_pippel=35; // #of parameters for pip_p-elastic (<nPoints=128)
363  // -0- -1- -2- -3- -4- -5- -6- -7--8--9--10-11-12--13-
364  G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
365  3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
366  3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
367  // -14--15--16--17--18- -19--20- -21- -22- -23- -24- -25-
368  // -26- -27- -28- -29- -30- -31- -32- -33- -34-
369  if(PDG == 211)
370  {
371  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
372  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
373  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
374  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
375  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
376  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
377  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
378  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
379  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
380  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
381  //
382  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
383  {
384  if ( tgZ == 1 && tgN == 0 )
385  {
386  for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
387  }
388  else
389  {
390  G4double a=tgZ+tgN;
391  G4double sa=std::sqrt(a);
392  G4double ssa=std::sqrt(sa);
393  G4double asa=a*sa;
394  G4double a2=a*a;
395  G4double a3=a2*a;
396  G4double a4=a3*a;
397  G4double a5=a4*a;
398  G4double a6=a4*a2;
399  G4double a7=a6*a;
400  G4double a8=a7*a;
401  G4double a9=a8*a;
402  G4double a10=a5*a5;
403  G4double a12=a6*a6;
404  G4double a14=a7*a7;
405  G4double a16=a8*a8;
406  G4double a17=a16*a;
407  //G4double a20=a16*a4;
408  G4double a32=a16*a16;
409  // Reaction cross-section parameters (pel=peh_fit.f)
410  lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1
411  lastPAR[1]=a/(1./4.4+1./a); // p2
412  lastPAR[2]=.22/G4Pow::GetInstance()->powA(a,.33); // p3
413  lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4
414  lastPAR[4]=3.E-4*G4Pow::GetInstance()->powA(a,.32)/(1.+14./a2); // p5
415  lastPAR[5]=0.; // p6 not used
416  lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7
417  lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8
418  lastPAR[8]=0.; // p9 not used
419  // @@ the differential cross-section is parameterized separately for A>6 & A<7
420  if(a<6.5)
421  {
422  G4double a28=a16*a12;
423  // The main pre-exponent (pel_sg)
424  lastPAR[ 9]=4000*a; // p1
425  lastPAR[10]=1.2e7*a8+380*a17; // p2
426  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
427  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
428  lastPAR[13]=.28*a; // p5
429  lastPAR[14]=1.2*a2+2.3; // p6
430  lastPAR[15]=3.8/a; // p7
431  // The main slope (pel_sl)
432  lastPAR[16]=.01/(1.+.0024*a5); // p1
433  lastPAR[17]=.2*a; // p2
434  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
435  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
436  // The main quadratic (pel_sh)
437  lastPAR[20]=2.25*a3; // p1
438  lastPAR[21]=18.; // p2
439  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
440  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
441  // The 1st max pre-exponent (pel_qq)
442  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
443  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
444  lastPAR[26]=.0006*a3; // p3
445  // The 1st max slope (pel_qs)
446  lastPAR[27]=10.+4.e-8*a12*a; // p1
447  lastPAR[28]=.114; // p2
448  lastPAR[29]=.003; // p3
449  lastPAR[30]=2.e-23; // p4
450  // The effective pre-exponent (pel_ss)
451  lastPAR[31]=1./(1.+.0001*a8); // p1
452  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
453  lastPAR[33]=.03; // p3
454  // The effective slope (pel_sb)
455  lastPAR[34]=a/2; // p1
456  lastPAR[35]=2.e-7*a4; // p2
457  lastPAR[36]=4.; // p3
458  lastPAR[37]=64./a3; // p4
459  // The gloria pre-exponent (pel_us)
460  lastPAR[38]=1.e8*G4Exp(.32*asa); // p1
461  lastPAR[39]=20.*G4Exp(.45*asa); // p2
462  lastPAR[40]=7.e3+2.4e6/a5; // p3
463  lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4
464  lastPAR[42]=2.5*a; // p5
465  // The gloria slope (pel_ub)
466  lastPAR[43]=920.+.03*a8*a3; // p1
467  lastPAR[44]=93.+.0023*a12; // p2
468  }
469  else
470  {
471  G4double p1a10=2.2e-28*a10;
472  G4double r4a16=6.e14/a16;
473  G4double s4a16=r4a16*r4a16;
474  // a24
475  // a36
476  // The main pre-exponent (peh_sg)
477  lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1
478  lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2
479  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
480  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
481  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
482  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
483  // The main slope (peh_sl)
484  lastPAR[15]=400./a12+2.e-22*a9; // p1
485  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
486  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
487  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
488  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
489  lastPAR[20]=9.+100./a; // p6
490  // The main quadratic (peh_sh)
491  lastPAR[21]=.002*a3+3.e7/a6; // p1
492  lastPAR[22]=7.e-15*a4*asa; // p2
493  lastPAR[23]=9000./a4; // p3
494  // The 1st max pre-exponent (peh_qq)
495  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
496  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
497  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
498  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
499  // The 1st max slope (peh_qs)
500  lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
501  lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2
502  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
503  lastPAR[31]=100./asa; // p4
504  // The 2nd max pre-exponent (peh_ss)
505  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
506  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
507  lastPAR[34]=1.3+3.e5/a4; // p3
508  lastPAR[35]=500./(a2+50.)+3; // p4
509  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
510  // The 2nd max slope (peh_sb)
511  lastPAR[37]=.4*asa+3.e-9*a6; // p1
512  lastPAR[38]=.0005*a5; // p2
513  lastPAR[39]=.002*a5; // p3
514  lastPAR[40]=10.; // p4
515  // The effective pre-exponent (peh_us)
516  lastPAR[41]=.05+.005*a; // p1
517  lastPAR[42]=7.e-8/sa; // p2
518  lastPAR[43]=.8*sa; // p3
519  lastPAR[44]=.02*sa; // p4
520  lastPAR[45]=1.e8/a3; // p5
521  lastPAR[46]=3.e32/(a32+1.e32); // p6
522  // The effective slope (peh_ub)
523  lastPAR[47]=24.; // p1
524  lastPAR[48]=20./sa; // p2
525  lastPAR[49]=7.e3*a/(sa+1.); // p3
526  lastPAR[50]=900.*sa/(1.+500./a3); // p4
527  }
528  // Parameter for lowEnergyNeutrons
529  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
530  }
531  lastPAR[nLast]=pwd;
532  // and initialize the zero element of the table
533  G4double lp=lPMin; // ln(momentum)
534  G4bool memCS=onlyCS; // ??
535  onlyCS=false;
536  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
537  onlyCS=memCS;
538  lastSST[0]=theSS;
539  lastS1T[0]=theS1;
540  lastB1T[0]=theB1;
541  lastS2T[0]=theS2;
542  lastB2T[0]=theB2;
543  lastS3T[0]=theS3;
544  lastB3T[0]=theB3;
545  lastS4T[0]=theS4;
546  lastB4T[0]=theB4;
547  }
548  if(LP>ILP)
549  {
550  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
551  if(ini<0) ini=0;
552  if(ini<nPoints)
553  {
554  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
555  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
556  if(fin>=ini)
557  {
558  G4double lp=0.;
559  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
560  {
561  lp=lPMin+ip*dlnP; // ln(momentum)
562  G4bool memCS=onlyCS;
563  onlyCS=false;
564  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
565  onlyCS=memCS;
566  lastSST[ip]=theSS;
567  lastS1T[ip]=theS1;
568  lastB1T[ip]=theB1;
569  lastS2T[ip]=theS2;
570  lastB2T[ip]=theB2;
571  lastS3T[ip]=theS3;
572  lastB3T[ip]=theB3;
573  lastS4T[ip]=theS4;
574  lastB4T[ip]=theB4;
575  }
576  return lp;
577  }
578  else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG
579  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
580  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
581  }
582  else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="
583  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
584  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
585  }
586  }
587  else
588  {
589  // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
590  // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
591  // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented");
593  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
594  << ", while it is defined only for PDG=211 (pi+)" << G4endl;
595  G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
596  FatalException, ed);
597  }
598  return ILP;
599 }
600 
601 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
603 {
604  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
605  static const G4double third=1./3.;
606  static const G4double fifth=1./5.;
607  static const G4double sevth=1./7.;
608  if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
609  if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
610  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
611  G4double q2=0.;
612  if(tgZ==1 && tgN==0) // ===> p+p=p+p
613  {
614  G4double E1=lastTM*theB1;
615  G4double R1=(1.-G4Exp(-E1));
616  G4double E2=lastTM*theB2;
617  G4double R2=(1.-G4Exp(-E2*E2*E2));
618  G4double E3=lastTM*theB3;
619  G4double R3=(1.-G4Exp(-E3));
620  G4double I1=R1*theS1/theB1;
621  G4double I2=R2*theS2;
622  G4double I3=R3*theS3;
623  G4double I12=I1+I2;
624  G4double rand=(I12+I3)*G4UniformRand();
625  if (rand<I1 )
626  {
627  G4double ran=R1*G4UniformRand();
628  if(ran>1.) ran=1.;
629  q2=-G4Log(1.-ran)/theB1;
630  }
631  else if(rand<I12)
632  {
633  G4double ran=R2*G4UniformRand();
634  if(ran>1.) ran=1.;
635  q2=-G4Log(1.-ran);
636  if(q2<0.) q2=0.;
637  q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
638  }
639  else
640  {
641  G4double ran=R3*G4UniformRand();
642  if(ran>1.) ran=1.;
643  q2=-G4Log(1.-ran)/theB3;
644  }
645  }
646  else
647  {
648  G4double a=tgZ+tgN;
650  G4double R1=(1.-G4Exp(-E1));
651  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
652  G4double tm2=lastTM*lastTM;
653  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
654  if(a>6.5)E2*=tm2; // for heavy nuclei
655  G4double R2=(1.-G4Exp(-E2));
656  G4double E3=lastTM*theB3;
657  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
658  G4double R3=(1.-G4Exp(-E3));
659  G4double E4=lastTM*theB4;
660  G4double R4=(1.-G4Exp(-E4));
661  G4double I1=R1*theS1;
662  G4double I2=R2*theS2;
663  G4double I3=R3*theS3;
664  G4double I4=R4*theS4;
665  G4double I12=I1+I2;
666  G4double I13=I12+I3;
667  G4double rand=(I13+I4)*G4UniformRand();
668  if(rand<I1)
669  {
670  G4double ran=R1*G4UniformRand();
671  if(ran>1.) ran=1.;
672  q2=-G4Log(1.-ran)/theB1;
673  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
674  }
675  else if(rand<I12)
676  {
677  G4double ran=R2*G4UniformRand();
678  if(ran>1.) ran=1.;
679  q2=-G4Log(1.-ran)/theB2;
680  if(q2<0.) q2=0.;
681  if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
682  else q2=G4Pow::GetInstance()->powA(q2,fifth);
683  }
684  else if(rand<I13)
685  {
686  G4double ran=R3*G4UniformRand();
687  if(ran>1.) ran=1.;
688  q2=-G4Log(1.-ran)/theB3;
689  if(q2<0.) q2=0.;
690  if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
691  }
692  else
693  {
694  G4double ran=R4*G4UniformRand();
695  if(ran>1.) ran=1.;
696  q2=-G4Log(1.-ran)/theB4;
697  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
698  }
699  }
700  if(q2<0.) q2=0.;
701  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
702  if(q2>lastTM)
703  {
704  q2=lastTM;
705  }
706  return q2*GeVSQ;
707 }
708 
709 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
711 {
712  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
713  if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl;
714  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
715  if(PDG != 211)
716  {
717  // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
718  // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
719  // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented");
721  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
722  << ", while it is defined only for PDG=211 (pi-)" << G4endl;
723  G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000",
724  FatalException, ed);
725  }
726  if(theB1<0.) theB1=0.;
727  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
728  return theB1/GeVSQ;
729 }
730 
731 // Returns half max(Q2=-t) in independent units (MeV^2)
733 {
734  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
735  return lastTM*HGeVSQ;
736 }
737 
738 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
740  G4int tgN)
741 {
742  if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl;
743 
744  //AR-24Apr2018 Switch to allow transuranic elements
745  const G4bool isHeavyElementAllowed = true;
746  if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
747  {
748  G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
749  return 0.;
750  }
751  G4int iZ=tgZ-1; // Z index
752  if(iZ<0)
753  {
754  iZ=0; // conversion of the neutron target to the proton target
755  tgZ=1;
756  tgN=0;
757  }
758  G4double p=G4Exp(lp); // momentum
759  G4double sp=std::sqrt(p); // sqrt(p)
760  G4double p2=p*p;
761  G4double p3=p2*p;
762  G4double p4=p2*p2;
763  if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
764  {
765  G4double dl2=lp-lastPAR[11];
766  theSS=lastPAR[34];
767  theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
768  (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
769  theB1=lastPAR[18]*G4Pow::GetInstance()->powA(p,lastPAR[19])/(1.+lastPAR[20]/p3);
770  theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
771  theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp);
772  theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
773  theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]);
774  theS4=0.;
775  theB4=0.;
776  // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
777  G4double dl1=lp+lastPAR[0]; // lr
778  G4double lr2=dl1*dl1; // lr2
779  G4double dl3=lp-lastPAR[3]; // ld
780  G4double dl4=lp-lastPAR[4]; // lm
781  return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
782  lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
783  }
784  else
785  {
786  G4double p5=p4*p;
787  G4double p6=p5*p;
788  G4double p8=p6*p2;
789  G4double p10=p8*p2;
790  G4double p12=p10*p2;
791  G4double p16=p8*p8;
792  //G4double p24=p16*p8;
793  G4double dl=lp-5.;
794  G4double a=tgZ+tgN;
795  G4double pah=G4Pow::GetInstance()->powA(p,a/2);
796  G4double pa=pah*pah;
797  G4double pa2=pa*pa;
798  if(a<6.5)
799  {
800  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
801  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
802  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
803  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
804  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
805  theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
806  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
807  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
808  theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
809  lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
810  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
811  }
812  else
813  {
814  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
815  lastPAR[13]/(p5+lastPAR[14]/p16);
816  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
817  lastPAR[17]/(1.+lastPAR[18]/p4);
818  theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
819  theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
821  theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
822  lastPAR[33]/(1.+lastPAR[34]/p6);
823  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
824  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
825  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
826  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
827  }
828  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
829  // p1 p2 p3
830  return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
831  lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
832  // p4 p5 p7 p8
833  }
834  return 0.;
835 } // End of GetTableValues
836 
837 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
839  G4double pP)
840 {
841  static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV
842  static const G4double mPi2= mPi*mPi;
843  G4double pP2=pP*pP; // squared momentum of the projectile
844  if(tgZ || tgN>-1) // ---> pipA
845  {
846  G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
847  G4double dmt=mt+mt;
848  G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds
849  return dmt*dmt*pP2/mds;
850  }
851  else
852  {
854  ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
855  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
856  G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
857  FatalException, ed);
858  return 0;
859  }
860 }
std::vector< G4double * > B1T
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
std::vector< G4double * > B3T
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:45
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
static const G4double pos
static G4ParticleTable * GetParticleTable()
virtual void CrossSectionDescription(std::ostream &) const
std::vector< G4double * > PAR
G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int pPDG, G4int Z, G4int N, G4double pP)
#define G4endl
Definition: G4ios.hh:61
const char * p
Definition: xmltok.h:285
G4double GetTabValues(G4double lp, G4int pPDG, G4int tgZ, G4int tgN)
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
std::vector< G4double * > B2T
G4IonTable * GetIonTable() const
std::vector< G4double * > CST
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4double GetPDGMass() const
std::vector< G4double * > SST
G4double G4Log(G4double x)
Definition: G4Log.hh:230
static constexpr double gigaelectronvolt
Definition: G4SIunits.hh:209
std::vector< G4double * > S4T
fin
Definition: AddMC.C:2
std::vector< G4double * > S2T
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
static constexpr double millibarn
Definition: G4SIunits.hh:106
static G4Pow * GetInstance()
Definition: G4Pow.cc:57
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:242
std::vector< G4double * > B4T
#define G4UniformRand()
Definition: Randomize.hh:53
double A(double temperature)
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetSlope(G4int tZ, G4int tN, G4int pPDG)
std::vector< G4double * > S3T
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.hh:65
std::vector< G4double * > S1T
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
int G4int
Definition: G4Types.hh:78
ifstream in
Definition: comparison.C:7
G4double GetPTables(G4double lpP, G4double lPm, G4int PDG, G4int tZ, G4int tN)
G4double GetQ2max(G4int pPDG, G4int tgZ, G4int tgN, G4double pP)
G4GLOB_DLL std::ostream G4cout
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:504
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
static constexpr double GeV
Definition: G4SIunits.hh:217