Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4ChipsPionMinusInelasticXS.cc
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4ChipsPionMinusInelasticXS for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 // -------------------------------------------------------------------------------------
35 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
36 // pion interactions. Original author: M. Kossov
37 // -------------------------------------------------------------------------------------
38 //
39 
42 #include "G4SystemOfUnits.hh"
43 #include "G4DynamicParticle.hh"
44 #include "G4ParticleDefinition.hh"
45 #include "G4PionMinus.hh"
46 
47 #include "G4Log.hh"
48 #include "G4Exp.hh"
49 
50 // factory
51 #include "G4CrossSectionFactory.hh"
52 //
54 
56 {
57  // Initialization of the
58  lastLEN=0; // Pointer to lastArray of LowEn CS
59  lastHEN=0; // Pointer to lastArray of HighEn CS
60  lastN=0; // The last N of calculated nucleus
61  lastZ=0; // The last Z of calculated nucleus
62  lastP=0.; // Last used cross section Momentum
63  lastTH=0.; // Last threshold momentum
64  lastCS=0.; // Last value of the Cross Section
65  lastI=0; // The last position in the DAMDB
66  LEN = new std::vector<G4double*>;
67  HEN = new std::vector<G4double*>;
68 }
69 
71 {
72  G4int lens=LEN->size();
73  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
74  delete LEN;
75  G4int hens=HEN->size();
76  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
77  delete HEN;
78 }
79 
80 void
82 {
83  outFile << "G4ChipsPionMinusInelasticXS provides the inelastic cross\n"
84  << "section for pion- nucleus scattering as a function of incident\n"
85  << "momentum. The cross section is calculated using M. Kossov's\n"
86  << "CHIPS parameterization of cross section data.\n";
87 }
88 
90  const G4Element*,
91  const G4Material*)
92 {
93  return true;
94 }
95 
96 // The main member function giving the collision cross section (P is in IU, CS is in mb)
97 // Make pMom in independent units ! (Now it is MeV)
99  const G4Isotope*,
100  const G4Element*,
101  const G4Material*)
102 {
103  G4double pMom=Pt->GetTotalMomentum();
104  G4int tgN = A - tgZ;
105 
106  return GetChipsCrossSection(pMom, tgZ, tgN, -211);
107 }
108 
110 {
111 
112  G4bool in=false; // By default the isotope must be found in the AMDB
113  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
114  {
115  in = false; // By default the isotope haven't be found in AMDB
116  lastP = 0.; // New momentum history (nothing to compare with)
117  lastN = tgN; // The last N of the calculated nucleus
118  lastZ = tgZ; // The last Z of the calculated nucleus
119  lastI = colN.size(); // Size of the Associative Memory DB in the heap
120  j = 0; // A#0f records found in DB for this projectile
121  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
122  {
123  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
124  {
125  lastI=i; // Remember the index for future fast/last use
126  lastTH =colTH[i]; // The last THreshold (A-dependent)
127  if(pMom<=lastTH)
128  {
129  return 0.; // Energy is below the Threshold value
130  }
131  lastP =colP [i]; // Last Momentum (A-dependent)
132  lastCS =colCS[i]; // Last CrossSect (A-dependent)
133  in = true; // This is the case when the isotop is found in DB
134  // Momentum pMom is in IU ! @@ Units
135  lastCS=CalculateCrossSection(-1,j,-211,lastZ,lastN,pMom); // read & update
136  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
137  {
138  lastCS=0.;
139  lastTH=pMom;
140  }
141  break; // Go out of the LOOP
142  }
143  j++; // Increment a#0f records found in DB
144  }
145  if(!in) // This isotope has not been calculated previously
146  {
148  lastCS=CalculateCrossSection(0,j,-211,lastZ,lastN,pMom); //calculate & create
149  //if(lastCS>0.) // It means that the AMBD was initialized
150  //{
151 
152  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
153  colN.push_back(tgN);
154  colZ.push_back(tgZ);
155  colP.push_back(pMom);
156  colTH.push_back(lastTH);
157  colCS.push_back(lastCS);
158  //} // M.K. Presence of H1 with high threshold breaks the syncronization
159  return lastCS*millibarn;
160  } // End of creation of the new set of parameters
161  else
162  {
163  colP[lastI]=pMom;
164  colCS[lastI]=lastCS;
165  }
166  } // End of parameters udate
167  else if(pMom<=lastTH)
168  {
169  return 0.; // Momentum is below the Threshold Value -> CS=0
170  }
171  else // It is the last used -> use the current tables
172  {
173  lastCS=CalculateCrossSection(1,j,-211,lastZ,lastN,pMom); // Only read and UpdateDB
174  lastP=pMom;
175  }
176  return lastCS*millibarn;
177 }
178 
179 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
181  G4int, G4int targZ, G4int targN, G4double Momentum)
182 {
183  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
184  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
185  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
186  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
187  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
188  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
189  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
190  static const G4int nH=224; // A#of HEN points in lnE
191  static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
192  static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
193  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
194  static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
195  G4double sigma=0.;
196  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
197  //G4double A=targN+targZ; // A of the target
198  if(F<=0) // This isotope was not the last used isotop
199  {
200  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
201  {
202  G4int sync=LEN->size();
203  if(sync<=I) G4cerr<<"*!*G4ChipsPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
204  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
205  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
206  }
207  else // This isotope wasn't calculated before => CREATE
208  {
209  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
210  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
211  // --- Instead of making a separate function ---
212  G4double P=THmiG; // Table threshold in GeV/c
213  for(G4int k=0; k<nL; k++)
214  {
215  lastLEN[k] = CrossSectionLin(targZ, targN, P);
216  P+=dPG;
217  }
218  G4double lP=milPG;
219  for(G4int n=0; n<nH; n++)
220  {
221  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
222  lP+=dlP;
223  }
224  // --- End of possible separate function
225  // *** The synchronization check ***
226  G4int sync=LEN->size();
227  if(sync!=I)
228  {
229  G4cerr<<"***G4ChipsPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
230  <<", N="<<targN<<", F="<<F<<G4endl;
231  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
232  }
233  LEN->push_back(lastLEN); // remember the Low Energy Table
234  HEN->push_back(lastHEN); // remember the High Energy Table
235  } // End of creation of the new set of parameters
236  } // End of parameters udate
237  // =---------------------= NOW the Magic Formula =---------------------------=
238  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
239  else if (Momentum<Pmin) // High Energy region
240  {
241  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
242  }
243  else if (Momentum<Pmax) // High Energy region
244  {
245  G4double lP=G4Log(Momentum);
246  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
247  }
248  else // UHE region (calculation, not frequent)
249  {
250  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
251  sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
252  }
253  if(sigma<0.) return 0.;
254  return sigma;
255 }
256 
257 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
259 {
260  G4double lP=G4Log(P);
261  return CrossSectionFormula(tZ, tN, P, lP);
262 }
263 
264 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
266 {
267  G4double P=G4Exp(lP);
268  return CrossSectionFormula(tZ, tN, P, lP);
269 }
270 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
272  G4double P, G4double lP)
273 {
274  G4double sigma=0.;
275  if(tZ==1 && !tN) // PiMin-Proton interaction from G4QuasiElRatios
276  {
277  G4double lr=lP+1.27; // From G4QuasiFreeRatios.cc Uzhi
278  G4double LE=1.53/(lr*lr+.0676); // From G4QuasiFreeRatios.cc Uzhi
279  G4double ld=lP-3.5;
280  G4double ld2=ld*ld;
281  G4double p2=P*P;
282  G4double p4=p2*p2;
283  G4double sp=std::sqrt(P);
284  G4double lm=lP+.36;
285  G4double md=lm*lm+.04;
286  G4double lh=lP-.017;
287  G4double hd=lh*lh+.0025;
288  G4double El=(.0557*ld2+2.4+7./sp)/(1.+.7/p4);
289  G4double To=(.3*ld2+22.3+12./sp)/(1.+.4/p4);
290  sigma=(To-El)+.4/md+.01/hd;
291  sigma+=LE*2; // Uzhi
292  }
293  else if(tZ==1 && tN==1) // pimp_tot
294  {
295  G4double p2=P*P;
296  G4double d=lP-2.7;
297  G4double f=lP+1.25;
298  G4double gg=lP-.017;
299  sigma=(.55*d*d+38.+23./std::sqrt(P))/(1.+.3/p2/p2)+18./(f*f+.1089)+.02/(gg*gg+.0025);
300  }
301  else if(tZ<97 && tN<152) // General solution
302  {
303  G4double d=lP-4.2;
304  G4double p2=P*P;
305  G4double p4=p2*p2;
306  G4double a=tN+tZ; // A of the target
307  G4double al=G4Log(a);
308  G4double sa=std::sqrt(a);
309  G4double ssa=std::sqrt(sa);
310  G4double a2=a*a;
311  G4double c=41.*G4Exp(al*.68)*(1.+44./a2)/(1.+8./a)/(1.+200./a2/a2);
312  G4double f=120*sa/(1.+24./a/ssa);
313  G4double gg=-1.32-al*.043;
314  G4double u=lP-gg;
315  G4double h=al*(.388-.046*al);
316  sigma=(c+d*d)/(1.+.17/p4)+f/(u*u+h*h);
317  }
318  else
319  {
320  G4cerr<<"-Warning-G4ChipsPiMinusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
321  sigma=0.;
322  }
323  if(sigma<0.) return 0.;
324  return sigma;
325 }
326 
328 {
329  if(DX<=0. || N<2)
330  {
331  G4cerr<<"***G4ChipsPionMinusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
332  return Y[0];
333  }
334 
335  G4int N2=N-2;
336  G4double d=(X-X0)/DX;
337  G4int jj=static_cast<int>(d);
338  if (jj<0) jj=0;
339  else if(jj>N2) jj=N2;
340  d-=jj; // excess
341  G4double yi=Y[jj];
342  G4double sigma=yi+(Y[jj+1]-yi)*d;
343 
344  return sigma;
345 }
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
#define G4endl
Definition: G4ios.hh:61
Float_t Y
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4double G4Log(G4double x)
Definition: G4Log.hh:230
virtual void CrossSectionDescription(std::ostream &) const
double G4double
Definition: G4Types.hh:76
bool G4bool
Definition: G4Types.hh:79
static constexpr double millibarn
Definition: G4SIunits.hh:106
**D E S C R I P T I O N
G4double CalculateCrossSection(G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
G4double EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double *Y)
static const G4double THmin
double A(double temperature)
Float_t d
static const G4int nL
#define G4_DECLARE_XS_FACTORY(cross_section)
G4GLOB_DLL std::ostream G4cerr
static double P[]
G4double CrossSectionLin(G4int targZ, G4int targN, G4double P)
Definition: Evaluator.cc:66
int G4int
Definition: G4Types.hh:78
ifstream in
Definition: comparison.C:7
G4double CrossSectionFormula(G4int targZ, G4int targN, G4double P, G4double lP)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
Char_t n[5]
G4double GetTotalMomentum() const
Float_t X
G4double CrossSectionLog(G4int targZ, G4int targN, G4double lP)
static const G4int nH
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)