Geant4  v4-10.4-release
 모두 클래스 네임스페이스들 파일들 함수 변수 타입정의 열거형 타입 열거형 멤버 Friends 매크로 그룹들 페이지들
G4AtomicFormFactor.hh
이 파일의 문서화 페이지로 가기
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4CrystalLattice.hh 94016 2015-11-05 10:14:49Z gcosmo $
28 //
29 
30 //---------------------------------------------------------------------------
31 //
32 // ClassName: G4AtomicFormFactor
33 //
34 // Description: Contains the function for the evaluation of the atomic form
35 // factor. The tabulated data are available on IUCr website
36 //
37 // Class description:
38 //
39 // XXX
40 //
41 
42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
43 
44 // 21-04-16, created by E.Bagli
45 
46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
47 
48 #ifndef G4ATOMICFORMFACTOR_HH
49 #define G4ATOMICFORMFACTOR_HH 1
50 
51 #include "globals.hh"
52 #include <vector>
53 #include <map>
54 #include "G4Exp.hh"
55 
56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57 
59 {
60 private:
62 
63 public:
67  }
69  }
70 
71  //
72  // theCoefficientsMap stores the coefficients for the form factor
73  // calculations. It can be loaded only by LoadCoefficiencts()
74  // and accessed by theCoefficients[].
75  //
76 private:
77  std::map<G4int,std::vector<G4double> > theCoefficientsMap;
80 
81  //
82  // LoadCoefficiencts() method allows the evaluation of the atomic form
83  // factor coefficients and the storage in theCoefficients.
84  // If theCoefficients are already correct, no need to get new ones
85  // Reference: International Tables for Crystallography (2006).
86  // Vol. C, ch. 6.1, pp. 554-595
87  // doi: 10.1107/97809553602060000600
88  // Chapter 6.1. Intensity of diffracted intensities
89  // IUCr Eq. 6.1.1.15, Coefficients Table 6.1.1.4
90  //
91 private:
92  void InsertCoefficients(G4int index,std::vector<G4double> aDoubleVec){
93  theCoefficientsMap.insert(std::pair<G4int,std::vector<G4double>>(index,aDoubleVec));
94  }
95 
96  void LoadCoefficiencts(G4int index){
97  loadedIndex = index;
98  for(unsigned int i0=0;i0<9;i0++){
99  theCoefficients[i0] = theCoefficientsMap[index][i0];
100  }
101 
102  }
103 
104  inline
105  G4int GetIndex(G4int Z, G4int charge = 0) {return Z*100 + charge;}
106 
107 
108  //
109  // Get() function gives back the Atomic Form Factor of the Z material
110  //
111 public:
112  G4double Get(G4double kScatteringVector, G4int Z, G4int charge = 0){
113  if(loadedIndex != GetIndex(Z,charge)){
114  LoadCoefficiencts(GetIndex(Z,charge));
115  }
116  G4double result = 0.;
117  G4double kVecOn4PiSquared = (kScatteringVector / 1.e-7 / 3.1415926536) * 0.125; // (k/(4pi))/ angstrom
118  kVecOn4PiSquared= kVecOn4PiSquared * kVecOn4PiSquared; // (k/(4pi))^2
119 
120  for(unsigned int i0=0;i0<4;i0++){
121  result += theCoefficients[i0*2] * G4Exp(- theCoefficients[i0*2+1] * kVecOn4PiSquared);
122  }
123  result += theCoefficients[8];
124  return result;
125  }
126 
127  //
128  // Singleton constructor to create the atomic form factor calculator
129  // Atomic form factor are evaluated using IUCr tables
130  // http://it.iucr.org/Cb/ch6o1v0001/
131  //
132 protected:
134  InsertCoefficients(100,{0.489918,20.6593,0.262003,7.74039,0.196767,49.5519,0.049879,2.20159,0.001305});
135  InsertCoefficients(99,{0.897661,53.1368,0.565616,15.187,0.415815,186.576,0.116973,3.56709,0.002389});
136  InsertCoefficients(200,{0.8734,9.1037,0.6309,3.3568,0.3112,22.9276,0.178,0.9821,0.0064});
137  InsertCoefficients(300,{1.1282,3.9546,0.7508,1.0524,0.6175,85.3905,0.4653,168.261,0.0377});
138  InsertCoefficients(301,{0.6968,4.6237,0.7888,1.9557,0.3414,0.6316,0.1563,10.0953,0.0167});
139  InsertCoefficients(400,{1.5919,43.6427,1.1278,1.8623,0.5391,103.483,0.7029,0.542,0.0385});
140  InsertCoefficients(402,{6.2603,0.0027,0.8849,0.8313,0.7993,2.2758,0.1647,5.1146,-6.1092});
141  InsertCoefficients(500,{2.0545,23.2185,1.3326,1.021,1.0979,60.3498,0.7068,0.1403,-0.19320});
142  InsertCoefficients(600,{2.31,20.8439,1.02,10.2075,1.5886,0.5687,0.865,51.6512,0.2156});
143  InsertCoefficients(610,{2.26069,22.6907,1.56165,0.656665,1.05075,9.75618,0.839259,55.5949,0.286977});
144  InsertCoefficients(700,{12.2126,0.0057,3.1322,9.8933,2.0125,28.9975,1.1663,0.5826,-11.529});
145  InsertCoefficients(800,{3.0485,13.2771,2.2868,5.7011,1.5463,0.3239,0.867,32.9089,0.2508});
146  InsertCoefficients(799,{4.1916,12.8573,1.63969,4.17236,1.52673,47.0179,-20.307,-0.01404,21.9412});
147  InsertCoefficients(900,{3.5392,10.2825,2.6412,4.2944,1.517,0.2615,1.0243,26.1476,0.2776});
148  InsertCoefficients(899,{3.6322,5.27756,3.51057,14.7353,1.26064,0.442258,0.940706,47.3437,0.653396});
149  InsertCoefficients(1000,{3.9553,8.4042,3.1125,3.4262,1.4546,0.2306,1.1251,21.7184,0.3515});
150  InsertCoefficients(1100,{4.7626,3.285,3.1736,8.8422,1.2674,0.3136,1.1128,129.424,0.676});
151  InsertCoefficients(1101,{3.2565,2.6671,3.9362,6.1153,1.3998,0.2001,1.0032,14.039,0.404});
152  InsertCoefficients(1200,{5.4204,2.8275,2.1735,79.2611,1.2269,0.3808,2.3073,7.1937,0.8584});
153  InsertCoefficients(1202,{3.4988,2.1676,3.8378,4.7542,1.3284,0.185,0.8497,10.1411,0.4853});
154  InsertCoefficients(1300,{6.4202,3.0387,1.9002,0.7426,1.5936,31.5472,1.9646,85.0886,1.1151});
155  InsertCoefficients(1303,{4.17448,1.93816,3.3876,4.14553,1.20296,0.228753,0.528137,8.28524,0.706786});
156  InsertCoefficients(1400,{6.2915,2.4386,3.0353,32.3337,1.9891,0.6785,1.541,81.6937,1.1407});
157  InsertCoefficients(1410,{5.66269,2.6652,3.07164,38.6634,2.62446,0.916946,1.3932,93.5458,1.24707});
158  InsertCoefficients(1404,{4.43918,1.64167,3.20345,3.43757,1.19453,0.2149,0.41653,6.65365,0.746297});
159  InsertCoefficients(1500,{6.4345,1.9067,4.1791,27.157,1.78,0.526,1.4908,68.1645,1.1149});
160  InsertCoefficients(1600,{6.9053,1.4679,5.2034,22.2151,1.4379,0.2536,1.5863,56.172,0.8669});
161  InsertCoefficients(1700,{11.4604,0.0104,7.1964,1.1662,6.2556,18.5194,1.6455,47.7784,-9.5574});
162  InsertCoefficients(1699,{18.2915,0.0066,7.2084,1.1717,6.5337,19.5424,2.3386,60.4486,-16.378});
163  InsertCoefficients(1800,{7.4845,0.9072,6.7723,14.8407,0.6539,43.8983,1.6442,33.3929,1.4445});
164  InsertCoefficients(1900,{8.2186,12.7949,7.4398,0.7748,1.0519,213.187,0.8659,41.6841,1.4228});
165  InsertCoefficients(1901,{7.9578,12.6331,7.4917,0.7674,6.359,-0.00200,1.1915,31.9128,-4.9978});
166  InsertCoefficients(2000,{8.6266,10.4421,7.3873,0.6599,1.5899,85.7484,1.0211,178.437,1.3751});
167  InsertCoefficients(2002,{15.6348,-0.00740,7.9518,0.6089,8.4372,10.3116,0.8537,25.9905,-14.875});
168  InsertCoefficients(2100,{9.189,9.0213,7.3679,0.5729,1.6409,136.108,1.468,51.3531,1.3329});
169  InsertCoefficients(2103,{13.4008,0.29854,8.0273,7.9629,1.65943,-0.28604,1.57936,16.0662,-6.6667});
170  InsertCoefficients(2200,{9.7595,7.8508,7.3558,0.5,1.6991,35.6338,1.9021,116.105,1.2807});
171  InsertCoefficients(2202,{9.11423,7.5243,7.62174,0.457585,2.2793,19.5361,0.087899,61.6558,0.897155});
172  InsertCoefficients(2203,{17.7344,0.22061,8.73816,7.04716,5.25691,-0.15762,1.92134,15.9768,-14.652});
173  InsertCoefficients(2204,{19.5114,0.178847,8.23473,6.67018,2.01341,-0.29263,1.5208,12.9464,-13.280});
174  InsertCoefficients(2300,{10.2971,6.8657,7.3511,0.4385,2.0703,26.8938,2.0571,102.478,1.2199});
175  InsertCoefficients(2302,{10.106,6.8818,7.3541,0.4409,2.2884,20.3004,0.0223,115.122,1.2298});
176  InsertCoefficients(2303,{9.43141,6.39535,7.7419,0.383349,2.15343,15.1908,0.016865,63.969,0.656565});
177  InsertCoefficients(2305,{15.6887,0.679003,8.14208,5.40135,2.03081,9.97278,-9.5760,0.940464,1.7143});
178  InsertCoefficients(2400,{10.6406,6.1038,7.3537,0.392,3.324,20.2626,1.4922,98.7399,1.1832});
179  InsertCoefficients(2402,{9.54034,5.66078,7.7509,0.344261,3.58274,13.3075,0.509107,32.4224,0.616898});
180  InsertCoefficients(2433,{9.6809,5.59463,7.81136,0.334393,2.87603,12.8288,0.113575,32.8761,0.518275});
181  InsertCoefficients(2500,{11.2819,5.3409,7.3573,0.3432,3.0193,17.8674,2.2441,83.7543,1.0896});
182  InsertCoefficients(2502,{10.8061,5.2796,7.362,0.3435,3.5268,14.343,0.2184,41.3235,1.0874});
183  InsertCoefficients(2503,{9.84521,4.91797,7.87194,0.294393,3.56531,10.8171,0.323613,24.1281,0.393974});
184  InsertCoefficients(2504,{9.96253,4.8485,7.97057,0.283303,2.76067,10.4852,0.054447,27.573,0.251877});
185  InsertCoefficients(2600,{11.7695,4.7611,7.3573,0.3072,3.5222,15.3535,2.3045,76.8805,1.0369});
186  InsertCoefficients(2602,{11.0424,4.6538,7.374,0.3053,4.1346,12.0546,0.4399,31.2809,1.0097});
187  InsertCoefficients(2603,{11.1764,4.6147,7.3863,0.3005,3.3948,11.6729,0.0724,38.5566,0.9707});
188  InsertCoefficients(2700,{12.2841,4.2791,7.3409,0.2784,4.0034,13.5359,2.3488,71.1692,1.0118});
189  InsertCoefficients(2702,{11.2296,4.1231,7.3883,0.2726,4.7393,10.2443,0.7108,25.6466,0.9324});
190  InsertCoefficients(2703,{10.338,3.90969,7.88173,0.238668,4.76795,8.35583,0.725591,18.3491,0.286667});
191  InsertCoefficients(2800,{12.8376,3.8785,7.292,0.2565,4.4438,12.1763,2.38,66.3421,1.0341});
192  InsertCoefficients(2802,{11.4166,3.6766,7.4005,0.2449,5.3442,8.873,0.9773,22.1626,0.8614});
193  InsertCoefficients(2803,{10.7806,3.5477,7.75868,0.22314,5.22746,7.64468,0.847114,16.9673,0.386044});
194  InsertCoefficients(2900,{13.338,3.5828,7.1676,0.247,5.6158,11.3966,1.6735,64.8126,1.191});
195  InsertCoefficients(2901,{11.9475,3.3669,7.3573,0.2274,6.2455,8.6625,1.5578,25.8487,0.89});
196  InsertCoefficients(2902,{11.8168,3.37484,7.11181,0.244078,5.78135,7.9876,1.14523,19.897,1.14431});
197  InsertCoefficients(3000,{14.0743,3.2655,7.0318,0.2333,5.1652,10.3163,2.41,58.7097,1.3041});
198  InsertCoefficients(3002,{11.9719,2.9946,7.3862,0.2031,6.4668,7.0826,1.394,18.0995,0.7807});
199  InsertCoefficients(3100,{15.2354,3.0669,6.7006,0.2412,4.3591,10.7805,2.9623,61.4135,1.7189});
200  InsertCoefficients(3103,{12.692,2.81262,6.69883,0.22789,6.06692,6.36441,1.0066,14.4122,1.53545});
201  InsertCoefficients(3200,{16.0816,2.8509,6.3747,0.2516,3.7068,11.4468,3.683,54.7625,2.1313});
202  InsertCoefficients(3204,{12.9172,2.53718,6.70003,0.205855,6.06791,5.47913,0.859041,11.603,1.45572});
203  InsertCoefficients(3300,{16.6723,2.6345,6.0701,0.2647,3.4313,12.9479,4.2779,47.7972,2.531});
204  InsertCoefficients(3400,{17.0006,2.4098,5.8196,0.2726,3.9731,15.2372,4.3543,43.8163,2.8409});
205  InsertCoefficients(3500,{17.1789,2.1723,5.2358,16.5796,5.6377,0.2609,3.9851,41.4328,2.9557});
206  InsertCoefficients(3499,{17.1718,2.2059,6.3338,19.3345,5.5754,0.2871,3.7272,58.1535,3.1776});
207  InsertCoefficients(3600,{17.3555,1.9384,6.7286,16.5623,5.5493,0.2261,3.5375,39.3972,2.825});
208  InsertCoefficients(3700,{17.1784,1.7888,9.6435,17.3151,5.1399,0.2748,1.5292,164.934,3.4873});
209  InsertCoefficients(3701,{17.5816,1.7139,7.6598,14.7957,5.8981,0.1603,2.7817,31.2087,2.0782});
210  InsertCoefficients(3800,{17.5663,1.5564,9.8184,14.0988,5.422,0.1664,2.6694,132.376,2.5064});
211  InsertCoefficients(3802,{18.0874,1.4907,8.1373,12.6963,2.5654,24.5651,-34.193,-0.01380,41.4025});
212  InsertCoefficients(3900,{17.776,1.4029,10.2946,12.8006,5.72629,0.125599,3.26588,104.354,1.91213});
213  InsertCoefficients(3903,{17.9268,1.35417,9.1531,11.2145,1.76795,22.6599,-33.108,-0.01319,40.2602});
214  InsertCoefficients(4000,{17.8765,1.27618,10.948,11.916,5.41732,0.117622,3.65721,87.6627,2.06929});
215  InsertCoefficients(4004,{18.1668,1.2148,10.0562,10.1483,1.01118,21.6054,-2.6479,-0.10276,9.41454});
216  InsertCoefficients(4100,{17.6142,1.18865,12.0144,11.766,4.04183,0.204785,3.53346,69.7957,3.75591});
217  InsertCoefficients(4103,{19.8812,0.019175,18.0653,1.13305,11.0177,10.1621,1.94715,28.3389,-12.912});
218  InsertCoefficients(4105,{17.9163,1.12446,13.3417,0.028781,10.799,9.28206,0.337905,25.7228,-6.3934});
219  InsertCoefficients(4200,{3.7025,0.2772,17.2356,1.0958,12.8876,11.004,3.7429,61.6584,4.3875});
220  InsertCoefficients(4203,{21.1664,0.014734,18.2017,1.03031,11.7423,9.53659,2.30951,26.6307,-14.421});
221  InsertCoefficients(4205,{21.0149,0.014345,18.0992,1.02238,11.4632,8.78809,0.740625,23.3452,-14.316});
222  InsertCoefficients(4206,{17.8871,1.03649,11.175,8.48061,6.57891,0.058881,0,0,0.344941});
223  InsertCoefficients(4300,{19.1301,0.864132,11.0948,8.14487,4.64901,21.5707,2.71263,86.8472,5.40428});
224  InsertCoefficients(4400,{19.2674,0.80852,12.9182,8.43467,4.86337,24.7997,1.56756,94.2928,5.37874});
225  InsertCoefficients(4403,{18.5638,0.847329,13.2885,8.37164,9.32602,0.017662,3.00964,22.887,-3.1892});
226  InsertCoefficients(4404,{18.5003,0.844582,13.1787,8.12534,4.71304,0.36495,2.18535,20.8504,1.42357});
227  InsertCoefficients(4500,{19.2957,0.751536,14.3501,8.21758,4.73425,25.8749,1.28918,98.6062,5.328});
228  InsertCoefficients(4503,{18.8785,0.764252,14.1259,7.84438,3.32515,21.2487,-6.1989,-0.01036,11.8678});
229  InsertCoefficients(4504,{18.8545,0.760825,13.9806,7.62436,2.53464,19.3317,-5.6526,-0.01020,11.2835});
230  InsertCoefficients(4600,{19.3319,0.698655,15.5017,7.98929,5.29537,25.2052,0.605844,76.8986,5.26593});
231  InsertCoefficients(4602,{19.1701,0.696219,15.2096,7.55573,4.32234,22.5057,0,0,5.2916});
232  InsertCoefficients(4604,{19.2493,0.683839,14.79,7.14833,2.89289,17.9144,-7.9492,0.005127,13.0174});
233  InsertCoefficients(4700,{19.2808,0.6446,16.6885,7.4726,4.8045,24.6605,1.0463,99.8156,5.179});
234  InsertCoefficients(4701,{19.1812,0.646179,15.9719,7.19123,5.27475,21.7326,0.357534,66.1147,5.21572});
235  InsertCoefficients(4702,{19.1643,0.645643,16.2456,7.18544,4.3709,21.4072,0,0,5.21404});
236  InsertCoefficients(4800,{19.2214,0.5946,17.6444,6.9089,4.461,24.7008,1.6029,87.4825,5.0694});
237  InsertCoefficients(4802,{19.1514,0.597922,17.2535,6.80639,4.47128,20.2521,0,0,5.11937});
238  InsertCoefficients(4900,{19.1624,0.5476,18.5596,6.3776,4.2948,25.8499,2.0396,92.8029,4.9391});
239  InsertCoefficients(4903,{19.1045,0.551522,18.1108,6.3247,3.78897,17.3595,0,0,4.99635});
240  InsertCoefficients(5000,{19.1889,5.8303,19.1005,0.5031,4.4585,26.8909,2.4663,83.9571,4.7821});
241  InsertCoefficients(5002,{19.1094,0.5036,19.0548,5.8378,4.5648,23.3752,0.487,62.2061,4.7861});
242  InsertCoefficients(5004,{18.9333,5.764,19.7131,0.4655,3.4182,14.0049,0.0193,-0.75830,3.9182});
243  InsertCoefficients(5100,{19.6418,5.3034,19.0455,0.4607,5.0371,27.9074,2.6827,75.2825,4.5909});
244  InsertCoefficients(5103,{18.9755,0.467196,18.933,5.22126,5.10789,19.5902,0.288753,55.5113,4.69626});
245  InsertCoefficients(5105,{19.8685,5.44853,19.0302,0.467973,2.41253,14.1259,0,0,4.69263});
246  InsertCoefficients(5200,{19.9644,4.81742,19.0138,0.420885,6.14487,28.5284,2.5239,70.8403,4.352});
247  InsertCoefficients(5300,{20.1472,4.347,18.9949,0.3814,7.5138,27.766,2.2735,66.8776,4.0712});
248  InsertCoefficients(5301,{20.2332,4.3579,18.997,0.3815,7.8069,29.5259,2.8868,84.9304,4.0714});
249  InsertCoefficients(5400,{20.2933,3.9282,19.0298,0.344,8.9767,26.4659,1.99,64.2658,3.7118});
250  InsertCoefficients(5500,{20.3892,3.569,19.1062,0.3107,10.662,24.3879,1.4953,213.904,3.3352});
251  InsertCoefficients(5501,{20.3524,3.552,19.1278,0.3086,10.2821,23.7128,0.9615,59.4565,3.2791});
252  InsertCoefficients(5600,{20.3361,3.216,19.297,0.2756,10.888,20.2073,2.6959,167.202,2.7731});
253  InsertCoefficients(5602,{20.1807,3.21367,19.1136,0.28331,10.9054,20.0558,0.77634,51.746,3.02902});
254  InsertCoefficients(5700,{20.578,2.94817,19.599,0.244475,11.3727,18.7726,3.28719,133.124,2.14678});
255  InsertCoefficients(5703,{20.2489,2.9207,19.3763,0.250698,11.6323,17.8211,0.336048,54.9453,2.4086});
256  InsertCoefficients(5800,{21.1671,2.81219,19.7695,0.226836,11.8513,17.6083,3.33049,127.113,1.86264});
257  InsertCoefficients(5803,{20.8036,2.77691,19.559,0.23154,11.9369,16.5408,0.612376,43.1692,2.09013});
258  InsertCoefficients(5804,{20.3235,2.65941,19.8186,0.21885,12.1233,15.7992,0.144583,62.2355,1.5918});
259  InsertCoefficients(5900,{22.044,2.77393,19.6697,0.222087,12.3856,16.7669,2.82428,143.644,2.0583});
260  InsertCoefficients(5903,{21.3727,2.6452,19.7491,0.214299,12.1329,15.323,0.97518,36.4065,1.77132});
261  InsertCoefficients(5904,{20.9413,2.54467,20.0539,0.202481,12.4668,14.8137,0.296689,45.4643,1.24285});
262  InsertCoefficients(6000,{22.6845,2.66248,19.6847,0.210628,12.774,15.885,2.85137,137.903,1.98486});
263  InsertCoefficients(6003,{21.961,2.52722,19.9339,0.199237,12.12,14.1783,1.51031,30.8717,1.47588});
264  InsertCoefficients(6100,{23.3405,2.5627,19.6095,0.202088,13.1235,15.1009,2.87516,132.721,2.02876});
265  InsertCoefficients(6103,{22.5527,2.4174,20.1108,0.185769,12.0671,13.1275,2.07492,27.4491,1.19499});
266  InsertCoefficients(6200,{24.0042,2.47274,19.4258,0.196451,13.4396,14.3996,2.89604,128.007,2.20963});
267  InsertCoefficients(6203,{23.1504,2.31641,20.2599,0.174081,11.9202,12.1571,2.71488,24.8242,0.954586});
268  InsertCoefficients(6300,{24.6274,2.3879,19.0886,0.1942,13.7603,13.7546,2.9227,123.174,2.5745});
269  InsertCoefficients(6302,{24.0063,2.27783,19.9504,0.17353,11.8034,11.6096,3.87243,26.5156,1.36389});
270  InsertCoefficients(6303,{23.7497,2.22258,20.3745,0.16394,11.8509,11.311,3.26503,22.9966,0.759344});
271  InsertCoefficients(6400,{25.0709,2.25341,19.0798,0.181951,13.8518,12.9331,3.54545,101.398,2.4196});
272  InsertCoefficients(6403,{24.3466,2.13553,20.4208,0.155525,11.8708,10.5782,3.7149,21.7029,0.645089});
273  InsertCoefficients(6500,{25.8976,2.24256,18.2185,0.196143,14.3167,12.6648,2.95354,115.362,3.58324});
274  InsertCoefficients(6503,{24.9559,2.05601,20.3271,0.149525,12.2471,10.0499,3.773,21.2773,0.691967});
275  InsertCoefficients(6600,{26.507,2.1802,17.6383,0.202172,14.5596,12.1899,2.96577,111.874,4.29728});
276  InsertCoefficients(6603,{25.5395,1.9804,20.2861,0.143384,11.9812,9.34972,4.50073,19.581,0.68969});
277  InsertCoefficients(6700,{26.9049,2.07051,17.294,0.19794,14.5583,11.4407,3.63837,92.6566,4.56796});
278  InsertCoefficients(6703,{26.1296,1.91072,20.0994,0.139358,11.9788,8.80018,4.93676,18.5908,0.852795});
279  InsertCoefficients(6800,{27.6563,2.07356,16.4285,0.223545,14.9779,11.3604,2.98233,105.703,5.92046});
280  InsertCoefficients(6803,{26.722,1.84659,19.7748,0.13729,12.1506,8.36225,5.17379,17.8974,1.17613});
281  InsertCoefficients(6900,{28.1819,2.02859,15.8851,0.238849,15.1542,10.9975,2.98706,102.961,6.75621});
282  InsertCoefficients(6903,{27.3083,1.78711,19.332,0.136974,12.3339,7.96778,5.38348,17.2922,1.63929});
283  InsertCoefficients(7000,{28.6641,1.9889,15.4345,0.257119,15.3087,10.6647,2.98963,100.417,7.56672});
284  InsertCoefficients(7002,{28.1209,1.78503,17.6817,0.15997,13.3335,8.18304,5.14657,20.39,3.70983});
285  InsertCoefficients(7003,{27.8917,1.73272,18.7614,0.13879,12.6072,7.64412,5.47647,16.8153,2.26001});
286  InsertCoefficients(7100,{28.9476,1.90182,15.2208,9.98519,15.1,0.261033,3.71601,84.3298,7.97628});
287  InsertCoefficients(7103,{28.4628,1.68216,18.121,0.142292,12.8429,7.33727,5.59415,16.3535,2.97573});
288  InsertCoefficients(7200,{29.144,1.83262,15.1726,9.5999,14.7586,0.275116,4.30013,72.029,8.58154});
289  InsertCoefficients(7204,{28.8131,1.59136,18.4601,0.128903,12.7285,6.76232,5.59927,14.0366,2.39699});
290  InsertCoefficients(7300,{29.2024,1.77333,15.2293,9.37046,14.5135,0.295977,4.76492,63.3644,9.24354});
291  InsertCoefficients(7305,{29.1587,1.50711,18.8407,0.116741,12.8268,6.31524,5.38695,12.4244,1.78555});
292  InsertCoefficients(7400,{29.0818,1.72029,15.43,9.2259,14.4327,0.321703,5.11982,57.056,9.8875});
293  InsertCoefficients(7406,{29.4936,1.42755,19.3763,0.104621,13.0544,5.93667,5.06412,11.1972,1.01074});
294  InsertCoefficients(7500,{28.7621,1.67191,15.7189,9.09227,14.5564,0.3505,5.44174,52.0861,10.472});
295  InsertCoefficients(7600,{28.1894,1.62903,16.155,8.97948,14.9305,0.382661,5.67589,48.1647,11.0005});
296  InsertCoefficients(7604,{30.419,1.37113,15.2637,6.84706,14.7458,0.165191,5.06795,18.003,6.49804});
297  InsertCoefficients(7700,{27.3049,1.59279,16.7296,8.86553,15.6115,0.417916,5.83377,45.0011,11.4722});
298  InsertCoefficients(7703,{30.4156,1.34323,15.862,7.10909,13.6145,0.204633,5.82008,20.3254,8.27903});
299  InsertCoefficients(7704,{30.7058,1.30923,15.5512,6.71983,14.2326,0.167252,5.53672,17.4911,6.96824});
300  InsertCoefficients(7800,{27.0059,1.51293,17.7639,8.81174,15.7131,0.424593,5.7837,38.6103,11.6883});
301  InsertCoefficients(7802,{29.8429,1.32927,16.7224,7.38979,13.2153,0.263297,6.35234,22.9426,9.85329});
302  InsertCoefficients(7804,{30.9612,1.24813,15.9829,6.60834,13.7348,0.16864,5.92034,16.9392,7.39534});
303  InsertCoefficients(7900,{16.8819,0.4611,18.5913,8.6216,25.5582,1.4826,5.86,36.3956,12.0658});
304  InsertCoefficients(7901,{28.0109,1.35321,17.8204,7.7395,14.3359,0.356752,6.58077,26.4043,11.2299});
305  InsertCoefficients(7903,{30.6886,1.2199,16.9029,6.82872,12.7801,0.212867,6.52354,18.659,9.0968});
306  InsertCoefficients(8000,{20.6809,0.545,19.0417,8.4484,21.6575,1.5729,5.9676,38.3246,12.6089});
307  InsertCoefficients(8001,{25.0853,1.39507,18.4973,7.65105,16.8883,0.443378,6.48216,28.2262,12.0205});
308  InsertCoefficients(8002,{29.5641,1.21152,18.06,7.05639,12.8374,0.284738,6.89912,20.7482,10.6268});
309  InsertCoefficients(8100,{27.5446,0.65515,19.1584,8.70751,15.538,1.96347,5.52593,45.8149,13.1746});
310  InsertCoefficients(8101,{21.3985,1.4711,20.4723,0.517394,18.7478,7.43463,6.82847,28.8482,12.5258});
311  InsertCoefficients(8103,{30.8695,1.1008,18.3481,6.53852,11.9328,0.219074,7.00574,17.2114,9.8027});
312  InsertCoefficients(8200,{31.0617,0.6902,13.0637,2.3576,18.442,8.618,5.9696,47.2579,13.4118});
313  InsertCoefficients(8202,{21.7886,1.3366,19.5682,0.488383,19.1406,6.7727,7.01107,23.8132,12.4734});
314  InsertCoefficients(8204,{32.1244,1.00566,18.8003,6.10926,12.0175,0.147041,6.96886,14.714,8.08428});
315  InsertCoefficients(8300,{33.3689,0.704,12.951,2.9238,16.5877,8.7937,6.4692,48.0093,13.5782});
316  InsertCoefficients(8303,{21.8053,1.2356,19.5026,6.24149,19.1053,0.469999,7.10295,20.3185,12.4711});
317  InsertCoefficients(8305,{33.5364,0.91654,25.0946,0.39042,19.2497,5.71414,6.91555,12.8285,-6.7994});
318  InsertCoefficients(8400,{34.6726,0.700999,15.4733,3.55078,13.1138,9.55642,7.02588,47.0045,13.677});
319  InsertCoefficients(8500,{35.3163,0.68587,19.0211,3.97458,9.49887,11.3824,7.42518,45.4715,13.7108});
320  InsertCoefficients(8600,{35.5631,0.6631,21.2816,4.0691,8.0037,14.0422,7.4433,44.2473,13.6905});
321  InsertCoefficients(8700,{35.9299,0.646453,23.0547,4.17619,12.1439,23.1052,2.11253,150.645,13.7247});
322  InsertCoefficients(8800,{35.763,0.616341,22.9064,3.87135,12.4739,19.9887,3.21097,142.325,13.6211});
323  InsertCoefficients(8802,{35.215,0.604909,21.67,3.5767,7.91342,12.601,7.65078,29.8436,13.5431});
324  InsertCoefficients(8900,{35.6597,0.589092,23.1032,3.65155,12.5977,18.599,4.08655,117.02,13.5266});
325  InsertCoefficients(8903,{35.1736,0.579689,22.1112,3.41437,8.19216,12.9187,7.05545,25.9443,13.4637});
326  InsertCoefficients(9000,{35.5645,0.563359,23.4219,3.46204,12.7473,17.8309,4.80703,99.1722,13.4314});
327  InsertCoefficients(9004,{35.1007,0.555054,22.4418,3.24498,9.78554,13.4661,5.29444,23.9533,13.376});
328  InsertCoefficients(9100,{35.8847,0.547751,23.2948,3.41519,14.1891,16.9235,4.17287,105.251,13.4287});
329  InsertCoefficients(9200,{36.0228,0.5293,23.4128,3.3253,14.9491,16.0927,4.188,100.613,13.3966});
330  InsertCoefficients(9203,{35.5747,0.52048,22.5259,3.12293,12.2165,12.7148,5.37073,26.3394,13.3092});
331  InsertCoefficients(9204,{35.3715,0.516598,22.5326,3.05053,12.0291,12.5723,4.7984,23.4582,13.2671});
332  InsertCoefficients(9206,{34.8509,0.507079,22.7584,2.8903,14.0099,13.1767,1.21457,25.2017,13.1665});
333  InsertCoefficients(9300,{36.1874,0.511929,23.5964,3.25396,15.6402,15.3622,4.1855,97.4908,13.3573});
334  InsertCoefficients(9303,{35.7074,0.502322,22.613,3.03807,12.9898,12.1449,5.43227,25.4928,13.2544});
335  InsertCoefficients(9304,{35.5103,0.498626,22.5787,2.96627,12.7766,11.9484,4.92159,22.7502,13.2116});
336  InsertCoefficients(9306,{35.0136,0.48981,22.7286,2.81099,14.3884,12.33,1.75669,22.6581,13.113});
337  InsertCoefficients(9400,{36.5254,0.499384,23.8083,3.26371,16.7707,14.9455,3.47947,105.98,13.3812});
338  InsertCoefficients(9403,{35.84,0.484938,22.7169,2.96118,13.5807,11.5331,5.66016,24.3992,13.1991});
339  InsertCoefficients(9404,{35.6493,0.481422,22.646,2.8902,13.3595,11.316,5.18831,21.8301,13.1555});
340  InsertCoefficients(9406,{35.1736,0.473204,22.7181,2.73848,14.7635,11.553,2.28678,20.9303,13.0582});
341  InsertCoefficients(9500,{36.6706,0.483629,24.0992,3.20647,17.3415,14.3136,3.49331,102.273,13.3592});
342  InsertCoefficients(9600,{36.6488,0.465154,24.4096,3.08997,17.399,13.4346,4.21665,88.4834,13.2887});
343  InsertCoefficients(9700,{36.7881,0.451018,24.7736,3.04619,17.8919,12.8946,4.23284,86.003,13.2754});
344  InsertCoefficients(9800,{36.9185,0.437533,25.1995,3.00775,18.3317,12.4044,4.24391,83.7881,13.2674});
345 
346  loadedIndex = -1;
347  }
348 
350 };
351 #endif
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
static G4AtomicFormFactor * s_G4AtomicFormFactorManager
G4double Get(G4double kScatteringVector, G4int Z, G4int charge=0)
void InsertCoefficients(G4int index, std::vector< G4double > aDoubleVec)
G4int GetIndex(G4int Z, G4int charge=0)
void LoadCoefficiencts(G4int index)
Float_t Z
double G4double
Definition: G4Types.hh:76
std::map< G4int, std::vector< G4double > > theCoefficientsMap
G4double G4ParticleHPJENDLHEData::G4double result
int G4int
Definition: G4Types.hh:78
static G4AtomicFormFactor * GetManager()