

LAMPS ToF Progress

August 20, 2021

New ToF Circuit test

- Benefits from this modification: Gain-drop on signal frequency is reduced.
- Voltage-Control: $\sim 2 V$
- Gain drop vs Frequency with new circuit were tested.
- Pulse shape seemed fine, gain-control was good.

Page 2/ 20

Gaindrop-frequency test

 $\begin{tabular}{ll} \hline \hline Gain-Frequency relation \\ \hline I = I_{base} + Gain \times freq & (1) \\ Gain = g(HV - R \times I) & (2) \\ Gain = g \frac{HV - R \times I_{base}}{1 + gR \times freq} \\ = g \frac{HV - R \times I_{base}}{1 + f/f_{HDF}} & (3) \end{tabular}$

- MPPC gain has liner dependence on applied voltage.
- This equaiton assumes flat photon distribution for all identical MPPCs.

Page 3/ 20

Result

Half-Drop Frequency	BTOF	FTOFIn	FTOFOut
MIP	3MHz	10MHz	10MHz
Saturation	0.5MHz	0.9MHz	1.2MHz

- Saturation region is around MHz/Segment.
- BTOF/FTOFOut covers wide-region, so Photon distribution was not flat.(Only half of MPPCs were hit.)

MPPC Gain Check.

$$I_{MPPC} = I_{photon} * N_{photon} / N_{MPPC}$$
(4)

$$= V_{drop}/R_{trim} = 40 \mu A = 2.5 \times 10^{14} e/s.$$
 (5)

Known parameters: $R_{trim} = 50$ k, $V_{drop} \simeq 2$ V at f_{HDR} , $N_{MPPC} \simeq 3$.

 고려대학교

 KOREA UNIVERSITY

Kang, Byungmin | |

Page 4/ 20

Photon Estimation

• *f*_{PhotonHDF} is based on saturation data.

Page 5/ 20

Page 6/ 20

Frame Design Concept

- TPC and FTOF supports BTOF
- FTOF is supported by rail

Page 7/ 20

FTOF Support

• FTOF is supported by two legs on the Rail.

Page 8/ 20

FTOF Board Protection

Supporting structure prevents FTOF detatchment while inserting LEMO.

Kang, Byungmin | |

Page 9/ 20

Loss-region

• Around 1/8 region cannot be covered by TOFs, due to support structure

Kang, Byungmin | |

Page 10/ 20

BACKUP

BACKUP

Page 11/ 20

Kang, Byungmin | |

MPPC Gain at Specsheet

53 ± 5		
		53 ± 5

Electrical and optical characteristics (Typ. Ta=25 °C, Vover=2.7 V, unless otherwise noted)

Parameter		Symbol	S14160/S14161 -3050HS-04, -08	S14160/S14161 -4050HS-06	S14160/S14161 -6050HS-04	unit
Spectral response range A		270 to 900			nm	
Peak sensitivity wavelength λp		450			nm	
Photon detection efficiency at λp*3		PDE	50			%
Breakdown voltage VBR		VBR	38			v
Recommended operating voltage*4		Vop	VBR + 2.7			v
Vop variation between Typ.			0.1			
channels in one product*5	Max.	0.2			- ·	
Dark current	Typ.	ID	0.6	1.1	2.5	μΑ
	Max.		1.8	3.3	7.5	
Crosstalk probability		-	7		%	
Terminal capacitance Ct		500	900	2000	pF	
Gain		М	2.5 × 10 ⁶		-	
Temperature coefficient of recommended reverse voltage		ΔTVop	34			mV/°C

*3: Photon detection efficiency does not include crosstalk and afterpulses.

*4: Refer to the data attached for each product.

*5: The parameter is for the S14161 series (multichannel type)

BTOFPhoton

Page 13/ 20

FTOFPhoton

Page 14/ 20

BTOFMIP

Page 15/ 20

Kang, Byungmin | |

FTOFInMIP

FTOFOutMIP

Page 17/ 20

Kang, Byungmin | |

BTOFSat

Page 18/ 20

FTOFInSat

Page 19/ 20

FTOFOutSat

Page 20/ 20

