

status of **AT-TPC** development

Yongsun Kim LAMPS meeting, 2020.4.17

• April 2019

	19/04	19/05	19/06	19/07	19/08
Field Cage	계획	디자인 E-Field	구매	시작품의 시작품 제작	테스트
Gas System	계획	디자인	구매 견적	제작	테스트
Readout Chamber	계획	디자인	구매 견적	제작	테스트
Geant4	계획	Event Gene	→	Geom	→
GET system	계획	테스트	→	→	→

• April 2019

	19/04	19/05	19/06	19/07	19/08
Field Cage	계획	디자인 E-Field	구매	시작품의 시작품 제작	테스트
Gas System	계획	디자인	구매 견적	제작	테스트
Readout Chamber	계획	디자인	구매 견적	제작	테스트
Geant4	계획	Event Gene	→	Geom	→
GET system	계획	테스트	→	→	→

• April 2020

	19/04	
Field Cage	계획	디자 E-Fie
Gas System	계획	
Readout Chamber	계획	디자
Geant4	계획	Ever Gen
GET system	계획	텍스. YOU FORGET IT

- Status of plastic scintillator
 - Trigger system for cosmic muons

Readiness of prototype ATTPC

Design for the mains experiment, low-E LAMPS

Plastic Scintillator making decent signals

MPPC attached and tape wrapped

setup with power suppliers

Task flow

- gas system is ready for the cosmic ray experiment
- Need MFC and Helium for the low-pressure test later
- Voltage divider to be assembled

Task ID	Description	Preceding condition	notes
CB-1	클린 부스	N/A	DONE
STR	스트론튬	N/A	취소
GAS-1	P10 가스, 가스 실린더, 조절기 선정 (일성가스)	N/A	DONE
GAS-2	Fitting 및 튜브 선택 및 주문(<u>나사 규격 참고</u> + 튜 브 1/4")	GAS1	DONE
GAS-3	압력계 (Pressure gauge)	N/A	DONE
GAS-4	유량계 (Flowmeter) <u>https://www.dwyer-</u> <u>inst.com/Product/Flow/Flowmeters</u>	GAS-1	DONE
GAS-5	질량 흐름 제어기(Mass Flow Controller, MFC) <u>https://kr.omega.com/pptst/FMA-</u> <u>LP1600A.html</u>	GAS-1	Pending
FC-1	HV connector (panel mount type) (>15kV) 선정 <u>http://www.hvp.kr/sub/sub02_01.php?</u> <u>mode=list2&cat_no=128</u>	N/A	DONE
FC-2	Board to wire connector (>2kV) 선정 회사 링크: <u>link</u>	N/A	DONE
FC-3	Voltage divider materials for GEM	FC-2	DONE
FC-4	Copper wire	N/A	<u>11번가</u>
FC-5	Resistor 주문 HVP, digikey, 엘레파츠 <u>link</u>	N/A	DONE

Task flow

- Gas system is ready for the cosmic ray studies
- MFC and Helium gas for later low-pressure test
- Voltage divider to be assembled
- Two undergraduate students joined the group
 - GARFIELD simulation for the main experiment
 - Measurement of cosmic ray
 - Development of tracking using ML

ELEC	Voltage divider 조립 및 전압 측정	FC-2, FC-3, FC-4	
СНМ	Aluminum chamber 3D 디자인	Every GAS FC-1 DESIGN-2, 3	DONE
CHM-1	Aluminum chamber 주문	DSGN-1	3D 에코텍
DSGN-2	Readout PCB 디자인 (이룸테크)	СНМ	DONE
DSGN-3	ZAP board 회로 디자인 (이룸테크)	N/A	
ASSEM	Assembling of gas chamber	ELEC FC-5	
POWER-1	HV power supply 선정 및 주문 <u>https://www.caen.it/products/dt1570/</u>	DSGN-3	DONE
GEM-1	GEM 주문	N/A	메카로
GEM-2	High Voltage 에 따른 GEM 검수	GEM-1	
GARFIELD-1	가필드 디버깅 및 본 제품 전기장 시뮬레이션		학부생1
SCIN-1	NIM 모듈 주문	N/A	CAEN
SCIN-2	신틸레이터 및 NIM 모듈 작동 확인	SCIN-1	학부생2
SCIN-3	Analysis of cosmic muon kinematics	SCIN-2	학부생2

Gas chamber design for the main experiment

• Prototype chamber

Original plan

Gas chamber design for the main experiment

• Prototype chamber

Original plan

Overview of the AT-TPC scientific program.

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)	Scientific Leader
Transfer & Resonant	Nuclear Structure	$^{32}Mg(d,p)^{33}Mg$	3	100	Kanungo
Reactions		26 Ne(p,p) 26 Ne			
Astrophysical Reactions	Nucleosynthesis	²⁵ Al(³ He,d) ²⁶ Si	3	100	Famiano,
					Montes
Fusion and Breakup	Nuclear Structure	${}^{8}\mathrm{B}{+}^{40}\mathrm{Ar}$	3	1000	Kolata
Transfer	Pairing	⁵⁶ Ni+ ³ He	5-19	1000	Macchiavelli
Resonances	Quasimelecular	⁸ He+ ⁴ He	0-3	1000	Suzuki
	structures				
Fission Barriers	Nuclear Structure	¹⁹⁹ Tl, ¹⁹² Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS,	⁵⁴ Ni- ⁷⁰ Ni,	50 - 200	50,000	Garg
	Nuclear Astro.	¹⁰⁶ Sn- ¹²⁷ Sn			
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn,	50 - 200	50,000	Lynch
		³⁷ Ca - ⁴⁹ Ca			-

Gas chamber design for the main experiment

• Prototype chamber

- New plan
 - Focus on 10-20 MeV reactions
 - Square chamber as alternative options an option
 - Best geometry for flat E field

PCB design

1 11 11

MAIKO (Kyoto & RCNP)

50 cm

• LAMPS

- We have magnet, thus don't need track to stop in the active area
 - R for p_T of 10 MeV = 10 MeV / (2C*1T) = 1.6 cm
- Better to have small active area and dense readout pads
 - $150x150mm^2/4000 = 2.4x2.4 mm^2per channel$
- Resume the pad design study
 - Soyoon Choi

GARFIELD++ simulation with new setup

- Rooms for improvement of the voltage divider
 - Project for 학부생1
- To be deployed for prototype

BACKUP

References

- 1203.3336
 - First excited Hoyle state of ¹²C)
- 1805.06074
 - Intruder configuration in 12Be)
 - ${}^{11}\text{Be} + \text{d} \rightarrow {}^{12}\text{Be} + \text{p},$
- PRC 87, 054301 (2013)
 - Resonant alpha scattering
 - α + ⁶He -> ¹⁰Be
- 1908.01910
 - Neutron quadruple transition strength in ¹⁰C with MAIKO exp.
 - α + ¹⁰C @ 68 MeV
- 1811.11580
 - Open problems of alpha clusters (very nice review)
 - Search for Hoyle state in ¹⁶O
- 1704.08154
 - ²⁰Ne resonance from ¹⁶O + α elastic scattering
 - Use of TTIK detector
 - Discussion about Bose-Eienstien condensation

1. MAIKo AT-TPC

Conclusion of the paper

The cross section of the $\alpha + {}^{10}$ C elastic scattering enabled the determination of the phenomenological α -N effective interaction and the point-nucleon distribution of the ground state in 10 C. The rms radius of 2.6 ± 0.3 fm in 10 C is consistent with the theoretical prediction by the AMD calculation [47] and the experimental result of the previous proton elastic scattering [13], but slightly larger than that deduced from the interaction cross section [48].

From the cross section of the $\alpha + {}^{10}$ C inelastic scattering to the 2_1^+ state, the neutron transition matrix element of $M_n = 6.9 \pm 0.7$ (fit) ± 1.2 (sys) was obtained. The M_n/M_p ratio in 10 C was determined as $M_n/M_p = 1.05 \pm 0.11$ (fit) ± 0.17 (sys), and thus, the effect of the Z = 6 subshell closure reported in neutronrich carbon isotopes [31] is not evident in the proton-rich side. This result is supported from the theoretical calculations.

MAIKO AT-TPC vs LAMPS AT-TPC

2. TTIK (Thick Target Inverse Kinematics) method

- TTIK in DC-60 cyclotron (Astana)
 - 99.99% of He gas
 - Beam stops in the gas chamber
- Study of ²⁰Ne resonances via alpha + ¹⁶O elastic scattering
 - E up to 1.9 MeV/A
- Scattered α is detected by Si-array
- Calibrated with α from ²²⁶Ra and ²¹⁸Po
 - Energy resolution ~ 30 keV

2. TTIK (Thick Target Inverse Kinematics) method

400

 $d\sigma/d\Omega \;(mb/sr)$

 E_{CM} (MeV)

TABLE I. ²⁰Ne levels

- ** Calculated in *psd* space. SF is to the first excited state in 16 O; SFs for the ground state in 16 O are < 0.1
- Results in the range of E = 5 6 MeV suggested to modify the R-matrix fit ullet
- Argues that fp shell and higher oscillation must be included in the model to ulletdescribe the strong clustering features, the

3. TTIK at Texas A&M

- TTIK experiment using K150 cyclotron beam in Texas A&M
 - 20Ne + α at E_{max} = 13 MeV/u
 - 4x10¹⁰ particles used for analysis
- Check hypothesis of BEC states of ¹²C
 - 3α would decay symmetrically
 - Not found. Γ(3α) / Γ(α + 8Be -> 3α) ~ 10⁻⁴
- Search for Hoyle-like states in ¹⁶O and ²⁰Ne
- Similar momentum resolution with DC-60

0 5 10 15 20 25 30 35 40 45 50 E*₂₄_{Mg} (MeV)

Quadruple a events

3. T

- $a + {}^{20}Ne -> {}^{16}O + {}^{8}Be -> 6a$
- 659 events found
- Candidate for Hoyle-like state of ¹⁶O (Funaki)

In the summary section

MeV above the 6 alpha particles threshold or 33 42 MeV

In the future we plan to use this same experimental method to collect larger statistics data on¹⁶O and later to explore heavier systems. We are also considering the possibility to insert an active TPC volume at the end of the chamber in the region after the point where the beam is stopped and before the silicon detector array. This will help to reduce the energy threshold and to trace the trajectories back to the interaction point.

LAMPS can be the great chance for this study!