Lattice QCD and QCD phase diagram

Seung-il Nam

Department of Physics, Pukyong National University (PKNU), Center for Extreme Nuclear Matters (CENuM), Korea University, Asia Pacific Center for Theoretical Center Physics (APCTP), Republic of Korea

2. QCD at extreme conditions

QCD has complicated phase structure as a function of temperature and density

Why are heavy-ion collision experiments special for QCD?

Thermodynamic properties: NJL vs. LIM

Chiral phase diagram via effective quark mass

Thermodynamic properties: NJL vs. LIM

4. Some numerical results

Various transport coefficients

In viscous hydrodynamics simulations, η of QGP used as a parameter

QCD is a first principle for strong interactions but too difficult in low-E as we have seen

- Ideas for overcoming huddles:
- 1) We have computing machines
- 2) Physics is based on CALCULUS
- 3) Correlations can be expressed by multiple differentiations
- 4) Reconstruct QCD in discret spacetime

$$f'(a) = \lim_{h
ightarrow 0} rac{f(a+h)-f(a)}{h}.$$

5) Using path integral for correlations and statistical methods: Why????6) Profit!!

Kenneth G. Wilson (1936 ~ 2013)

Physical Review D. 25 (10): 2649.

QCD correlation functions are redefined in discretized space-time

Four-dimensional Euclidean space-time with volume L³T

<0|O(x)O(y)|0>

In continuous limit $a \rightarrow 0$, it becomes our world again

Unfortunately, we have infinite possible paths as quantum fluctuations: Which route do I need to take?

We have a powerful method for this: Path integral

Ok, fine, then how to perform path integral with the discrete spacetime technically?

Again, we have powerful method:

Statistical Monte-Carlo simulation

Stanisław Marcin Ulam

•First, we start with the path integral for this purpose for QCD

$$\left\langle \mathcal{O}(\bar{\psi},\psi,U) \right\rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \ \mathcal{O}(\bar{\psi},\psi,U) \ \mathrm{e}^{-S_G[U] - S_F[\bar{\psi},\psi,U]}$$

Using external Grassmann fields to integrate out the fermion fields

$$\left\langle \mathcal{O}(\bar{\psi},\psi,U) \right\rangle = \frac{1}{Z} \int \mathcal{D}U \; \left(\det D(U)\right) \; \mathrm{e}^{-S_G[U]} \; \mathcal{O}'(U)$$

Redefined operator $\mathcal{O}'(U) \equiv \mathcal{O}(-\frac{\partial}{\partial \eta}, \frac{\partial}{\partial \bar{\eta}}, U) e^{\bar{\eta} D^{-1}(U)\eta} \Big|_{\eta = \bar{\eta} = 0}$

How to perform MC with this???

- 1. Generate a uniform random number i
- 2. Generate a gauge configuration Ui by weighting probability P=det[D(Ui)] exp(-SG[Ui]) to the uniform random number Importance sampling: P and 1/P are known!!
- 3. Calculate O'(Ui) for the obtained Ui
- 4. Repeat the process N times

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}'(U_i) = \frac{1}{Z} \int \mathcal{D}U \, e^{-S_G[U]} \, \mathcal{O}'(U) = \left\langle \mathcal{O}(\bar{\psi}, \psi, U) \right\rangle$$

Generating Ui with P

Sequential generating U via Markov-Chain MC

•Metropolis-Hastings algorithm: Certain probability of $U_i \rightarrow U_j$

<u>1.Introduction: Lattice QCD</u>

Make things easy! : Quenched approximation

There are infinite sea (virtual) quarks in Dirac sea: Quark loops

Decoupling sea quarks by making sea-quark mass infinite

$$\frac{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)}{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)} \sim \frac{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)}{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)}$$

This treatment is the same with det D(U) =1

Due to this, "P" becomes local (without derivatives) and simple!!!!

<u>1.Introduction: Lattice QCD</u>

How to make SG in LQCD? : Plaquette action

Link variable U which make (anti)quark move to a next site

$$U_{\mu}(x) = \exp\left[iaA_{\mu}(x)\right]$$

 $\psi(x+ax_2)$ =U can be understood as a gauge link in SU(Nc)

$$G(x,y) = P \exp\left[i \int A_{\mu} ds^{\mu}\right]$$

<u>1.Introduction: Lattice QCD</u>

What is a gauge-invariant quantity, constructed by U?A smallest closed loop L of multiplications of U: Plaquette

<u> 1.Introduction: Lattice QCD</u>

Constructing action with Plaquette: Wilson gauge action

$$S_G[U] = \frac{2}{g^2} \sum_x \sum_{\mu < \nu} \operatorname{ReTr} \left[1 - U_{\mu\nu}(x) \right]$$

I do not prove equivalence..

In continuous limit, it (closely) becomes usual QCD gauge action

In SU(2), this action can be written as

$$S_P[U] = \beta \sum_{x} \sum_{\mu=1}^{3} \left[(4-\mu) - \frac{2}{N_c} b^0_{\mu}(x) \right] = \sum_{a=0}^{3} \left(b^a_{\mu}(x) \right)^2 = 1$$

Here, we have used the SU(2) generator nature (Pauli matrix)
After tedious calculations, we arrive at the final expression: $\left\langle \mathcal{O}(\bar{\psi},\psi,U)\right\rangle = \frac{1}{Z} \prod_{x,\mu} e^{-(4-\mu)} \int_{-1}^{1} d(\cos\theta) \int_{0}^{2\pi} d\phi \int_{-1}^{1} db_{\mu}^{0}(x) \frac{\sqrt{1-(b_{\mu}^{0}(x))^{2}}}{2} \exp\left[\frac{2\beta}{N}b_{\mu}^{0}(x)\right] \mathcal{O}'(U)$

Quenched! <u>1.Introduction: Lattice QCD</u>

SU(2) Willson (plaquette) action gets simpler

$$\left\langle \mathcal{O}(\bar{\psi},\psi,U) \right\rangle = \frac{1}{Z} \prod_{x,\mu} e^{-(4-\mu)} \int_{-1}^{1} d\left(\cos\theta\right) \int_{0}^{2\pi} d\phi \int_{e^{-2\beta/N_c}}^{e^{2\beta/N_c}} dY \frac{N_c}{4\beta} \sqrt{1 - \left(\frac{N_c}{2\beta}\log Y\right)^2} \mathcal{O}'(U)$$

$$Y = \exp\left[\frac{2\beta}{N_c} b_{\mu}^0(x)\right] \iff b_{\mu}^0(x) = \frac{N_c}{2\beta}\log Y$$

Pseudo-Heat-bath method (importance sampling)
1. Random generation of Y (~b) and 0≤ξ≤1
2. Computing P = √~ then compare it with ξ
3. If P ≥ ξ, take Y (~b), and vice versa going to 1 again
4. Computing O'(U) with obtained Y
5. Generating angles randomly then perform integration!!

Although we have a big jump....

■LQCD in finite quark chemical potential: What's wrong with this? ■We compute $\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}'(U_i)$ with P = (det D(U)) $e^{-S_G[U]}$

Note that $det[D] = DD^+$

The quark Dirac operator with chemical potential reads

 $D(\mu_q) = \not D + m + \mu_q \gamma_0$ $D^{\dagger}(\mu_q) = -\not D + m + \mu_q^* \gamma_0 = \gamma_5 D^{\dagger}(-\mu_q^*) \gamma_5$ $\{\det[D(\mu_q)]\}^* = \det[D^{\dagger}(\mu_q)] = \det[\gamma_5 D(-\mu_q^*) \gamma_5] = \det[D(-\mu_q^*)]$ If u is real det[D] is not real (complex), and VICE VERSA

If μ is real, det[D] is not real (complex), and VICE VERSA det[D] must be real, since it is probability P!!!

In addition, if it is a complex, then we have

$$\int dUO'(U)(R+iI)e^{-S_G} \sim \int dUO'(U)e^{-S_G+i\phi}$$

It's oscillation to cancel out the integral: Sign problem
 Notorious problem in strongly interacting fermion systems even in condensed matter, QFT, and nuclear physics as well.

How to solve the sign problem???

- So far, there have been no cures (NP-hard problem)
- Many indirect and approximated methods developed

Canonical approach developed!!

Figure by Dr. Wakayama

 Fugacity expansion of grand canonical partition function

$$Z_{GC}[\mu_q, T, V] = \sum_{n} Z_C[n, T, V] \xi^n, \quad \xi = e^{\mu_q/T}$$

Fugacity

Gilbert Newton Lewis

Obtain canonical function partition function by Fourier transform

$$Z_C[n, T, V] = \int_0^{2\pi} \frac{\mu_{qI}/T}{2\pi} e^{-n\mu_{qI}/T} Z_{GC}[\mu_{qI}, T, V]$$

 For imaginary chemical potential, there is no SIGN problem One can do MCMC or Metropolis-Hastings MC Then, we obtain ZGC on LQCD

Canonical approach developed

If we get Z_n for all n, we can search at ANY density!

Slide by Dr. Wakayama

In numerical calculations, n is finite.

Slide by Dr. Wakayama

Application of canonical method: Lee-Yang zeros

Zeros of ZGC so-called Lee-Yang Zeros (LYZ) contain a valuable information on the phase transitions of a system.

T.D. Lee & C.N. Yang, Phys. Rev. 87, 404&410 (1952)

$$Z_{\rm GC}(\mu_q, T, V) = \sum_{n=-N_{\rm max}}^{N_{\rm max}} Z_{\rm c}(n, T, V) \xi^n = 0$$

Physically, at LYZ, critical-end point (CEP) appears!!

Application of canonical method: Lee-Yang zeros What is critical-end point (CEP)??

Application of canonical method: Lee-Yang zeros
 There are 2Nmax LYZs in complex fugacity plane

 Application of canonical method: Lee-Yang zeros
 First, we parameterize number density with sine function for more reliable numerical treatment in lattice QCD

Wakayama and Hosaka, PRD (2019)

Application of canonical method: Lee-Yang zeros We observe LYZs cross the Im[ξ]=0 line: CEP

Wakayama and Hosaka, PRD (2019)

Application of canonical method: **QCD phase structure**

Wakayama, Nam, and Hosaka, PRD (2020)

Wakayama, Nam, and Hosaka, PRD (2020)

Application of canonical method: **QCD phase structure**

Wakayama, Nam, and Hosaka, PRD (2020)

•Application of canonical method: QCD phase structure•As N_{max} increases, results from canonical
method reaches to exact value- Exact value
 \bigcirc $N_{max} = 120$
 \bigcirc $N_{max} = 012$
 \bigcirc $N_{max} = 006$
 $X_{max} = 003$
coincide with exact one: limitation of the
method...

Then, how do we quantify phase transition in this method?: Taking tolerance

$$\frac{n_B^{\rm PNJL}}{n_B^{\rm Canonical}} < 10\%$$

Wakayama, Nam, and Hosaka, PRD (2020)

Application of canonical method: QCD phase structure

Wakayama, Nam, and Hosaka, PRD (2020)

Thank you for your attention!!