Tetraquark mixing framework for light mesons in $J^P = 0^+$

Hungchong Kim (김흥종) Korea Aerospace U. & Korea U.

References:

- 1. EPJC (2017) 77:173, Hungchong Kim, M.K.Cheoun, K.S.Kim
- 2. EPJC (2017) 77:435, K.S. Kim, Hungchong Kim
- 3. PRD (2018) 97:094005, Hungchong Kim, K.S.Kim, M.K.Cheoun, M.Oka
- 4. PRD (2019) 99:014005, Hungchong Kim, K.S.Kim, M.K.Cheoun, D.Jido, M.Oka
- 5. PRD (2019) 100:034021, Hee-Jung Lee, K.S.Kim, Hungchong Kim

2nd CENuM Workshop, 3-4 July 2020 (On-line workshop)

- In PDG, there are two nonets with $J^P = 0^+$ which we call light and heavy nonet.
 - They seem to form SU(3) flavor nonet as they are composed of $I = 0, \frac{1}{2}, 1$ members.
 - Two nonets are separated by huge mass gap ($\gtrsim 500 \text{ MeV}$)

 $\ll K_0^*(800)$ has been renamed as $K_0^*(700)$ in the latest PDG.

- In this work, we investigate tetraquark possibility from the two nonets.
- We introduce two types of tetraquark based on diquark-antidiquark model and their mixing in order to explain the two nonets in PDG.

According to the diquark-antidiquark model, tetraquarks are constructed by $qq \times \bar{q}\bar{q} \Rightarrow qq\bar{q}\bar{q}\bar{q}$ assuming all the quarks are in an *S*-wave.

Two tetraquark types in $J^P = 0^+$

Type 1:

 $\left[qq \in \left(J_{12} = 0, \overline{3}_c, \overline{3}_f\right)\right] \otimes \left[\overline{q}\overline{q} \in \left(J_{34} = 0, 3_c, 3_f\right)\right] \Longrightarrow qq\overline{q}\overline{q} \in \left(J = 0, 1_c, 8_f \oplus 1_f\right)$

- Spin: $|J J_{12} J_{34}\rangle = |000\rangle$
- Color: $\overline{3}_c \otimes 3_c \Rightarrow \mathbf{1}_c, |\mathbf{1}_c \overline{3}_c 3_c \rangle$

Jaffe's tetraquark originally introduced for the light nonet $f_0(500), f_0(980), K_0^*(800), a_0(980)$

Type 2 :

 $\left[qq \in \left(J_{12} = 1, 6_c, \overline{3}_f\right)\right] \otimes \left[\overline{q}\overline{q} \in \left(J_{34} = 1, \overline{6}_c, 3_f\right)\right] \implies qq\overline{q}\overline{q} \in \left(J = 0, 1_c, 8_f \oplus 1_f\right)$

- Spin: $|J J_{12} J_{34}\rangle = |011\rangle$
- Color: $6_c \otimes \overline{6}_c \Rightarrow \overline{1_c}, |1_c 6_c \overline{6}_c\rangle$

2nd tetraquark proposed to accommodate the heavy nonet $f_0(1370), f_0(1500), K_0^*(1430), a_0(1450)$

Flavor: Both types have the **same** flavor structure!

 $\overline{3}_f \otimes 3_f = 8_f \oplus 1_f$ forming a nonet.

Common flavor structure

Notation: $[ud] = \frac{1}{\sqrt{2}}(ud - du)$, etc.

Main characteristics of tetraquark

• The mass ordering among the octet members, $(I = 1) > (I = \frac{1}{2}) > (I = 0),$ ex) $M([su][\bar{d}\bar{s}]) > M([su][\bar{u}\bar{d}]).$

This is opposite to what expected from two-quark system $(q\bar{q})$, $(I = 0) > (I = \frac{1}{2}) > (I = 1)$.

Two nonets in PDG satisfy the mass ordering !

Light nonet: $M[a_0(980)] > M[K_0^*(800)] > M[f_0(500)].$ Heavy nonet: $M[a_0(1450)] > M[K_0^*(1430)]$ with $\Delta M \sim 50$ MeV, $M[K_0^*(1430)] \gtrsim M[f_0(1370)].$ (marginal mass ordering)

First indication that the two nonets could be tetraquark.

We need to investigate further signatures for tetraquark from two nonets in PDG.

Question

How to describe

two nonets in PDG

- Light nonet: $f_0(500), f_0(980), K_0^*(800), a_0(980)$
- Heavy nonet: $f_0(1370), f_0(1500), K_0^*(1430), a_0(1450)$

by

two tetraquark types

- $|000\rangle_{\overline{3}_c,3_c} \Rightarrow |000\rangle$
- $|011\rangle_{6_c,\overline{6}_c} \Rightarrow |011\rangle$

that differ by the spin and color configurations ?

\Rightarrow Tetraquark mixing framework !

Crucial observation is that

the two tetraquark types, |000>, |011>, in each isospin channel, mix through the color-spin interaction!

$$V_{CS} \propto -\sum_{i < j} \lambda_i \cdot \lambda_j \frac{J_i \cdot J_j}{m_i m_j}$$

 λ_i : Gell-Mann matrix for color J_i : spin m_i : constituent quark mass

• i.e., $\langle 011|V_{CS}|000\rangle \neq 0$, $\langle V_{CS}\rangle$ forms a 2x2 matrix constituting so called the hyperfine mass matrix.

The upshot is that

 physical states, the two nonets in PDG, can be identified by the eigenstates that diagonalize the 2x2 matrix,

 $|\text{Heavy nonet}\rangle = -\alpha |000\rangle + \beta |011\rangle$ $|\text{Light nonet}\rangle = \beta |000\rangle + \alpha |011\rangle$

This is our tetraquark mixing framework for the two nonets in $J^P = 0^+$.

The steps that I have taken in this research

- Construct the wave functions for $|000\rangle$, $|011\rangle$, in spin, color, flavor space.
- Calculate the hyperfine mass matrix of V_{CS} in the basis $|000\rangle$, $|011\rangle$.
- Then diagonalize the matrix to determine the hyperfine mass $\langle V_{CS} \rangle$ and the mixing parameters α , β , in

 $|\text{Heavy nonet}\rangle = -\alpha |000\rangle + \beta |011\rangle$ $|\text{Light nonet}\rangle = \beta |000\rangle + \alpha |011\rangle$

 Investigate the phenomenological signatures of tetraquark and some interesting consequences. **Example)** In the I = 1 channel [corresponding to $a_0(980)$, $a_0(1450)$].

Diagonalization leads to the physical hyperfine masses

$\langle V_{CS} \rangle$	$ 000\rangle$	$ 011\rangle$		$\langle V_{CS} \rangle$	$ 0^{a_0}_A\rangle$	$ 0^{a_0}_B angle$
$ 000\rangle$	-173.9	-222.3	\rightarrow	$ 0^{a_0}_A\rangle$	-16.8	0.0
$ 011\rangle$	-222.3	-331.5		$ 0^{a_0}_B angle$	0.0	-488.5

and eigenstates corresponding to $a_0(980)$, $a_0(1450)$,

$$\begin{aligned} |0_A^{a_0}\rangle &= -0.817|000\rangle + 0.577|011\rangle & \Longrightarrow |a_0(1450)\rangle \\ |0_B^{a_0}\rangle &= \underbrace{0.577}_{\Theta}|000\rangle + \underbrace{0.817}_{\alpha}|011\rangle & \Longrightarrow |a_0(980)\rangle \,. \end{aligned}$$

This identification follows from $\langle 0_A^{a_0} | V_{CS} | 0_A^{a_0} \rangle > \langle 0_B^{a_0} | V_{CS} | 0_B^{a_0} \rangle$

Note, the **strong mixing** causes **large separation** in hyperfine masses $[\Delta \langle V_{CS} \rangle = -16.8 - (-488.5) \approx 471.7 \text{ MeV}].$

Results: some features of our mixing model

$\langle V_{CS} \rangle$ in the diagonal basis.										
\checkmark										
Light nonet	M_{exp}	$\langle V_{CS} \rangle$	Heavy nonet	M_{exp}	$\langle V_{CS} \rangle$	α	β			
$a_0(980)$	980	-488.5	$a_0(1450)$	1474	-16.8	0.8167	0.5770			
$K_0^*(800)$	824	-592.7	$K_0^*(1430)$	1425	-26.9	0.8130	0.5822			
$f_0(500)$	475	-667.5	$f_0(1370)$	1350	-29.2	0.8136	0.5814			
$f_0(980)$	990	-535.1	$f_0(1500)$	1506	-20.1	0.8157	0.5784			

1. α , β are almost independent of the isospin!

 \Rightarrow Support our identification of the two nonets in PDG as flavor nonet.

 $|\text{Heavy nonet}\rangle = -\alpha |000\rangle + \beta |011\rangle$ $|\text{Light nonet}\rangle = \beta |000\rangle + \alpha |011\rangle$

2. $\alpha > \beta$; Light nonet has more probability to stay in $|011\rangle$ rather than in $|000\rangle$!

|Light nonet> = $\beta |000\rangle + \alpha |011\rangle$

Surprising ! But recent QCDSR [PRD(2019)] also supports this result.

Light nonet	M_{exp}	$\langle V_{CS} \rangle$	Heavy nonet	M_{exp}	$\langle V_{CS} \rangle$
$a_0(980)$	980	-488.5	$a_0(1450)$	1474	-16.8
$K_0^*(800)$	824	-592.7	$K_0^*(1430)$	1425	-26.9
$f_0(500)$	475	-667.5	$f_0(1370)$	1350	-29.2
$f_0(980)$	990	-535.1	$f_0(1500)$	1506	-20.1

3. Our $\langle V_{CS} \rangle$ help to understand the light nonet mass below 1 GeV.

- For the light nonet, $\langle V_{CS} \rangle$ is negatively huge ~ -500 MeV due to the strong mixing. \Rightarrow the light nonet even if viewed as a four-quark state can have mass below 1 GeV.
- On the other hand, for the heavy nonet, $\langle V_{CS} \rangle \sim -20$ MeV,
- \Rightarrow So the heavy nonet mass is not far from ${\sim}4m_q$.

4. Our results satisfy the mass splitting formula $\Delta M \approx \Delta \langle V_{CS} \rangle$ relatively well.

Isospin	ΔM_{exp}	$\Delta \langle V_{CS} \rangle$
I = 1	494	472
I = 1/2	601	566
$I = 0 \ (\sim 8_f)$	875	612
$I = 0 (\sim 1_f)$	515	515(fit)

- Indeed, the large separation in hyperfine masses $\Delta \langle V_{CS} \rangle$ qualitatively explains the large mass gap ($\Delta M_{exp} \gtrsim 500$ MeV) between the two nonets!
- \Rightarrow It is the strong mixing that gives rise to this result also.

5. $\langle V_{CS} \rangle$ gives a partial explanation for the marginal mass ordering in the heavy nonet.

					-	Lxpt.	1103363
Isospin	Light	$\langle V_{CS} \rangle$	Heavy	$\langle V_{CS} \rangle$		Light	Heavy
I = 1	<i>a</i> ₀ (980)	-488.5	$a_0(1450)$	-16.8	<mark>~10</mark> ≕ 1	980	1474
I = 1/2	$K_0^*(800)$	-592.7	$K_0^*(1430) \ \sim 75$	-26.9	ncreasi	824	1425
$I=0~(\sim 8_f)$	$f_0(500)$	-667.5	$f_0(1370)$	-29.2	gr	475	1350
$I = 0 \; (\sim 1_f)$	$f_0(980)$	<u>-535.1</u>	$f_0(1500)$	<u>-20.1</u>		990	1505

- For the octet, our hyperfine masses are ordered as the expt. masses, $\langle V_{CS} \rangle_{I=1} > \langle V_{CS} \rangle_{I=1/2} > \langle V_{CS} \rangle_{I=0} \xrightarrow{\text{the same ordering}} M[a_0] > M[K_0^*] > M[f_0].$ $\mathbb{C} \langle V_{CS} \rangle$ is also responsible for the mass ordering (in addition to m_q).
- $\Delta \langle V_{CS} \rangle \lesssim 100 \text{ MeV}$ for the light nonet, $\Delta \langle V_{CS} \rangle \lesssim 10 \text{ MeV}$ for the heavy nonet
- The hyperfine mass spitting is almost ineffective on the heavy nonet. It explains partially the marginal mass ordering, $M[a_0(1450)] - M[K_0^*(1430)] \approx 50$ MeV.

Evet maccor

The PP prediction tested on isovector channel works quite well !

		Based on expt. analysi		
	Theory	Bugg	PDG	
$\frac{\Gamma[a_0(980) \to \pi\eta]}{\Gamma[a_0(1450) \to \pi\eta]}$	2.51 – 2.54	2.53	2.93 - 3.9	
$\frac{\Gamma[a_0(980) \to K\bar{K}]}{\Gamma[a_0(1450) \to K\bar{K}]}$	0.52 – 0.89	0.62	0.61 - 0.81	

Bugg: PRD78,074023(2008)

PRD(2019) 99:014005

VV modes from the two nonets

- The enhancement factor is about ~15 !
- But most channels are not allowed due to M(mother) < M₁ + M₂(daughters).

	Mode	$a_0^+(980)$	$a_0^+(1450)$	Ratio
I = 1	$ar{K}^{*0}K^{*+} \ \phi ho^+$	-0.0449 0.0449	-0.6439 0.6439	14.33
	Mode	$K_0^{*+}(800)$	$K_0^{*+}(1430)$	Ratio
I = 1/2	$ ho^+ K^{*0} ho^0 K^{*+} \omega K^{*+}$	-0.0408 -0.0289 0.0289	-0.6442 -0.4555 0.4555	15.78
	Mode	$f_0(500)$	$f_0(1370)$	Ratio
$I = 0 \; (\sim 8_f)$	$ ho^0 ho^0 ar{K}^{*0}K^{*0} ar{K}^{*0} ar{\phi} \omega \omega$	0.0185 -0.0133 0.0188 -0.0185	0.2869 -0.2069 0.2927 -0.2869	15.54
d.	Mode	$f_0(980)$	$f_0(1500)$	Ratio
$I = 0 \; (\sim 1_f)$	$ ho^0 ho^0 ar{K}^{*0}K^{*0} ar{k}^{*0} ar{k}^{*0} ar{\omega} ar{\omega}$	0.0100 0.0276 -0.0390 -0.0100	0.1463 0.4057 -0.5737 -0.1463	14.70

Thank you for your listening !

Extra slide: PDG full listing of the mesons in $J^P = 0^+$

	Category	Name	Isospin	JPC	M(MeV)	Г(MeV)	
		f _o (500)	0	0++	400-550	400-700	
	Light	f _o (980)	0	0++	990	10-100	
$(m \leq 1 \text{GeV})$	nonet	K _o *(800)	1/2	0+	824	478	
		a _o (980)	1	0++	980	50-100	Resonances in each isospin
		f ₀ (1370)	0	0++	1200-1500	200-500	\sim channel are separated by huge mass gap > 500 MeV/
	Heavy nonet	f _o (1500)	0	0++	1505	109	
$(1 < m \leq 1.5 \; ext{GeV})$		K ₀ *(1430)	1/2	0+	1425	270	_
		a ₀ (1450)	1	0++	1474	265	
		f ₀ (1710)	0	0++	1723	139	
No nonet structure here		f ₀ (2020)	0	0++	1992	442	
	The rest	f ₀ (2100)	0	0++	2101	224	
	higher	f _o (2200)	0	0++	2189	238	
		f _o (2330)	0	0++	2314	144	
		к _о *(1950)	1/2	0+	1945	201	

 $K_0^*(800)$ has been renamed as $K_0^*(700)$ in the latest PDG