CHARACTERIZATION OF A CHARGE VETO DETECTOR WITH WAVELENGTH-SHIFTING FIBERS AND MPPC READOUT FOR THE KOTO EXPERIMENT

고려대학교 최재민

KOTO experiment

zation $N_{PE} = \Delta E \frac{dL}{dE} \epsilon_A \epsilon_P \epsilon_C PDE$ Modelization

Incidence efficiency into MPPC

Simulation and Experiment results

Experiment results

Conclusion

- Characteristics of the KOTO DCV plastic scintillator with embedded WLS fibers and MPPC readouts have been studied using a quarter-size DCV test module and Geant4 simulation.
- A full Geant4 optical simulation could reproduce the 90 Sr source measurement results within 1% difference(assuming dL/dE = 10^4 /MeV, Quantum efficiency of WLS fiber = 85% and ground surface of aluminum light collecting box).
- KOTO DCV data analysis is now underway. The DCV can detect charged particles leaving energy deposit larger than 0.3 MeV.

backup

Absorbance

 Mathematically, probability of finding a particle at depth x into the material in calculated by Beer-Lambert Law

 $P(x) = e^{-x/l_0}$

- And l_0 is attenuation(absorption) length, and it depend on material and energy.
- Definition of absorbance is as follow.

ABS = $k(\lambda)Cd = log_{10}\{\frac{I_0(\lambda)}{I(\lambda)}\}$ when d = 10 mm

- For reference, C is equal to 200 ppm and k_p (k at peak of abosorption) is equal to 0.00638 in Y-11 of Kurarary
- Absorption(attenuation) length of Y-11 is as follow.

$$l_0 = \frac{1}{kC * ln10}$$

• C is concentration of dyne used in Y-11 and k is constant which is function of wavelength.

Simulation and Experiment results

Simulation results

Experiment results

MPPC Connection Problem

