

Kinematic Dependence of the Elliptic Flow in Small Collision Systems Observed by PHENIX Experiment

> Seyoung Han CENuM, Korea University, Seoul

Initial geometry effect observed by PHENIX, 2019

Aidala, C., Akiba, Y., Alfred, M. *et al.* Creation of quark–gluon plasma droplets with three distinct geometries. *Nat. Phys.* **15**, 214–220 (2019).

Hydrodynamic model expects the hierarchy in eccentricity of each collision systems Initial stages of the collision turns in to the developed velocity

Initial geometry effect observed by PHENIX, 2019

Consistent hierarchy shown in eccentricity and measured flow

Initial geometry effect propagates to the final stages Hydrodynamic calculation has a good estimation in measured data

Initial geometry effect observed by PHENIX, 2019

PHENIX detectors

18.5 m = 60 ft

Central arm :

charged particle measurement, particle identification

Forward-backward arm :

charged particle measurement, triggering, event-plane determination

7

Measurement of the elliptic flow - v_2

Two-particle correlations

3-subsystems combinations; kinematic dependence

$$v_2^{CNT} = \sqrt{\frac{c_2^{CNT-A}c_2^{CNT-B}}{c_2^{A-B}}} = \sqrt{\frac{c_2^{CNT-FVTXS}c_2^{CNT-BBCS}}{c_2^{FVTXS-BBCS}}} = \sqrt{\frac{c_2^{CNT-FVTXS}c_2^{CNT-FVTXS}c_2^{CNT-FVTXN}}{c_2^{FVTXS-FVTXN}}}$$

if the flow factorizes

if the flow factorizes

Flow factorization

$$c_2^{AB} = v_2^A * v_2^B$$

Medium particles are correlated each other but are uncorrelated with the nonflow (jet, etc) particles.

Larger multiplicity events ; Larger fraction of the particles are expected to be from the medium Influences of the jet particles are reduced

$$R^{CNT} = \frac{v_2^{CNT-FVTXS-FVTXN}}{v_2^{CNT-FVTXS-BBCS}} = \sqrt{\frac{c_2^{CNT-FVTXN}c_2^{FVTXS-BBCS}}{c_2^{FVTXS-FVTXN}c_2^{CNT-BBCS}}} = 1$$
PHENIX kinematic selections if the flow factorization works

System size dependence

_

System size dependence

- v_2 from STAR kinematic selections
- Larger size of flow+nonflow
- EP decorrelation effect at the denominator

v₂ from PHENIX kinematic selections

- smaller size of flow+nonflow
- Nonflow effect at denominator

System size dependence

- smaller size of flow+nonflow

Clear system size(multiplicity) dependence shown

AMPT prediction overshoots the v_2 – qualitatively reproduce the kinematic dependence

d+Au 200 GeV centrality dependence

Clear centrality dependence shown

AMPT prediction overshoots the v_2 – qualitatively reproduce the kinematic dependence

p+Au 200 GeV centrality dependence

Clear centrality dependence shown

AMPT prediction overshoots the v_2 – qualitatively reproduce the kinematic dependence

 v_2^{CNT} vs. dN/d $\eta_{n\sim0}$

- Clear kinematic dependence is shown in experimental data & AMPT

- d+Au v_2 {parton plane} reproduce the v_2 {BB}

v₂{FB} increases as a function of multiplicity

v₂{BB} shows a stable trend in the low multiplicity

AMPT calculation

- predicts system size dependence in low $\ensuremath{p_{\text{T}}}$
- no system size dependence predicted in

high p_T

R vs. $dN/d\eta_{\eta^{\sim}0}$

- Recovering of flow factorization in highmultiplicity events

Almost no system size dependence in experimental data and the AMPT calculation
AMPT reproduces the experimental data

Summary

- Clear kinematic dependence is found at v_2 in small collision systems
- Good complement for the current issue between PHENIX and STAR analysis
- Paper preparation group formation accepted by the PHENIX collaboration