JaeYoon CHO INHA University

CENuM Workshop 04th July 2020

Fast simulation of the Silicon Pad Detector

Introduction

Silicon Detector

- Because of its superior energy resolution and good response time, Silicon detector is widely used in nuclear physics experiments.
- The region where any free charge carrier (electrons and holes) rarely exists is called the **depletion region**.
- When the charged particles pass through the depletion region, they lose their energy by creating electron-hole pairs along the trajectory.
- Created electrons and holes are drifted to the electrodes because of the external electric field.
- To increase the depletion region, a reverse-bias voltage is applied to the device.

Detector Simulation

- We introduce an **open-source**-silicon-detector simulator named "*Fast Silicon Simulation*".
- Calculated results by "*Fast Silicon Simulation*" is compared with the results by a commercial simulation.

Simulation Setup

- We construct a 2cmx2cmx300µm volume of device composed of lightly doped n-type bulk and heavily doped p-type pad.
- To simplify electron-hole-pair generation process, we consider the MIP(Minimum Ionizing Particles).

Calculation

In this study, electric potential is calculated by the *Multi-grid method*.

Multi-grid method

- Apply the iteration method to wider lattices as an initial condition.
- By interpolating with the values of the surrounding lattice components,

Electric potential $\nabla^2 \phi = -\frac{p}{q}$ *ϵ*

where $\boldsymbol{\phi}$: electric potential, ρ : volume density, ϵ : permittivity of the material

the denser lattices are created.

• For each step, the iteration method is repeated until the potential values at

the lattices do not change by less than 0.01%.

• By filling the inside of the grid with the average value, calculation time can be reduced.

Calculation

Electric field \overrightarrow{L} $E\, = - \, \nabla \phi$

Induced current for electron *And hole* \rightarrow $J_e = e \rho_e \mu_e$ \overrightarrow{L} $E + eD_e \nabla n_e$ \overrightarrow{I} $J_h = e \rho_h \mu_h$ \overrightarrow{L} $E - eD_h \nabla n_h$

where $J_{\rho}(J_h)$: current density of electron(hole), $\rho_{\rho}(\rho_h)$: volume charge density of electron(hole), e : elementary charge, $n_e(n_h)$: electron(hole) density, Einstein's relation $D_e = - \; k_B T \mu_e/e$ ($D_h = k_B T \mu_h/e$) \rightarrow J_{e} \overrightarrow{I} J_h) : current density of electron(hole), $\;\rho_e^{}(\!\rho_h^{})$: volume charge density of electron(hole), e

When the potential is calculated, other quantities are calculated by following the equations below.

Modility

\n
$$
\mu_{e}(E) = \mu_{0,e} \left(\frac{1}{1 + \left(\frac{\mu_{0,e}E}{v_{sat,e}} \right)^2} \right)^{1/2} \mu_{h}(E) = \mu_{0,e} \frac{1}{1 + \frac{\mu_{0,h}E}{v_{sat,h}}}
$$

 W here $\mu_{0,e}(\mu_{0,h})$: mobility for electron(hole), $v_{sat,e}(v_{sat,h})$: saturation velocity of electron(hole)

$$
7n_e
$$

$$
\sqrt[n]{n_h}
$$

Results

Potential

- The potential projected in yz -plane at $x = 0$
- The potential distribution along the depth direction of the device in the depleted p-n junction follows the second-order polynomial.

- The direction and magnitude of the electric field along the depth axis.
- The electric field varies linearly from top to bottom of the device due to its uniform doping density.

Electric field

Results

Induced current

- The number of generated electron-hole pairs is set by 75 per µm in the silicon volume.
-
- Also, electrons are collected quickly to the anode than holes.

• Holes move slower than electrons in the device. The hole current is lower and falls later than the electron current.

Comparison with other simulation

- Silvaco TCAD (**T**echnology **C**omputer-**A**ided **D**esign) is a commercial semiconductor device simulator.
- Garfield++ is a simulation toolkit for particle detectors based on ionization measurement in gases or semiconductors.
- Electric field, potential, and induced currents in the Fast Silicon Simulation are consistent with the results from TCAD and Garfield++.

Conclusion & Summary

- We introduce a new **open-source**-silicon-detector simulator named "*Fast Silicon Simulation*".
- To calculate the potential and electric field, the multi-grid method and iterative method are used.
- Results by *Fast Silicon Simulation* are consistent to the results by TCAD simulation qualitatively and quantitatively.
- *Fast Silicon Simulation* is **100 times faster** than TCAD simulation.
- This simulation method can be used to study the optimized design and physical properties of the silicon detector.

