Yuson Jun¹

Collaborating with Jungmin Suh¹, Hyun-Chul Kim^{1,2}

¹Department of Physics, Inha University ²School of Physics, Korea Institute for Advanced Study (KIAS)

03. Jul. 2020, CENuM-Workshop

Contents

- Introduction
- Framework
- Axial-vector form factors for the baryon decuplet
- Comparison with other calculations
- Additional numerical results
- Summary & Outlook

Introduction

- The axial-vector current examines various sides of baryon properties (e.g. spin content, decay width, etc)
- The axial-vector structures of the baryon decuplet are not well known.
- Mass difference of light baryons, electromagnetic properties etc were described well in the chiral quark-soliton model.
- We would like to explain the axial-vector form factors of the baryon decuplet within the chiral quark-soliton model.

Sea quark contribution

Valence quark contribution

Framework

 Baryons can be considered as Nc valence quarks, which are bound by the mesonic mean-fields at large Nc (E. Witten, NPB160, 57 (1979)).

Effective chiral action: $S_{\text{eff}} = -N_c \text{Tr} \ln \left[i \gamma^{\mu} \partial_{\mu} + i \hat{m} + i M U^{\gamma_5} \right]$

- The Hedgehog ansatz is applied to the pseudo-Nambu-Goldston boson field.
- The mean-field can be found by solving the equations of motion self-consistently.
- Witten's trivial embedding is used to preserve the hedgehog symmetry in the flavor SU(3) (E. Witten, NPB223, 422 (1983)).
- We take into account the zero-mode quantization of the soliton (Rotational and translational zero modes).

$$\frac{\delta E_{cl}}{\delta U} = 0 \longrightarrow E_{cl} P(r)$$

 $U_{SU(2)}(r) = e^{i\mathbf{n}\cdot\boldsymbol{\tau}P(r)/f_{\pi}}$

$$U(r) = \begin{pmatrix} U_{SU(2)}(r) & 0\\ 0 & 1 \end{pmatrix}.$$

 $U(\boldsymbol{x},t) = A(t)U_c(\boldsymbol{x} - \boldsymbol{Z}(t))A^{\dagger}(t)$

Framework

$$\begin{split} & \left\{ \begin{array}{c} & \left\{ B_{J'}^{(10)}(p') \left| A_{a}^{\mu}(0) \right| B_{J}^{(10)}(p) \right\} \bullet \\ & \left\{ g_{1}^{(a)B}(q^{2})\eta_{\alpha\beta} + h_{1}^{(a)B}(q^{2})\frac{q_{\alpha}q_{\beta}}{4M_{B}^{2}} \right\} \\ & + \frac{q_{\mu}}{2M_{B}} \left\{ g_{3}^{(a)B}(q^{2})\eta_{\alpha\beta} + h_{3}^{(a)B}(q^{2})\frac{q_{\alpha}q_{\beta}}{4M_{B}^{2}} \right\} \right] \gamma^{5}u^{\beta}(p,J) \\ & \left\{ \int dA \int d^{3}z \, e^{i\vec{q}\cdot\vec{z}} \langle B_{J'}^{\prime(10)} \left| A \rangle \mathcal{F}_{\mu}^{a}(\vec{z},A) \langle A \left| B_{J}^{(10)} \right\rangle \right\} \\ & \left\{ g_{1}^{(a)B}(Q^{2}) = \frac{M_{B}}{E} \int d^{3}r \langle B(p',\frac{3}{2}) \right| \left[j_{0}(Q|\mathbf{r}|) \{ \hat{\mathcal{F}}_{A}^{a}(\mathbf{r}) \}_{10} - j_{2}(Q|\mathbf{r}|) \left\{ \sqrt{2\pi}Y_{2} \otimes \hat{\mathcal{F}}_{A}^{a}(\mathbf{r}) \right\}_{10} \right] |B(p,\frac{3}{2}) \rangle \\ & g_{3}^{(a)B}(Q^{2}) = -\frac{4M_{B}^{2}}{EQ^{2}} \int d^{3}r \langle B(p',\frac{3}{2}) | \left[(E-M_{B})j_{0}(Q|\mathbf{r}|) \{ \hat{\mathcal{F}}_{A}^{a}(\mathbf{r}) \}_{10} \right] \\ & + (2E+M_{B})j_{2}(Q|\mathbf{r}|) \left\{ \sqrt{2\pi}Y_{2} \otimes \hat{\mathcal{F}}_{A}^{a}(\mathbf{r}) \right\}_{10} \right] |B(p,\frac{3}{2}) \rangle \end{split}$$

The form factor $h_{1,3}^{(a)B}(q^2)$ are in fact the same as $g_{1,3}^{(a)B}(q^2)$ apart from the kinematical factors

$$g_{1(3)}^{(a)B}(Q^2) = (g_{1(3)}^{(a)B}(Q^2))^{(\text{sym})} + (g_{1(3)}^{(a)B}(Q^2))^{(\text{op})} + (g_{1(3)}^{(a)B}(Q^2))^{(\text{wf})}$$

The flavor SU(3) symmetry breaking contributions

The triplet axial-vector form factors, a=3

The singlet axial-vector form factors, a=0

The octet axial-vector form factors, a=8

Alexandrou et al, PRD87, 114513, 2013

$g_1^{(3)B}(0)$	Δ^{++}	Δ^+	Δ^0	Δ^{-}	Σ^{*+}	Σ^{*0}	Σ^{*-}	Ξ^{*0}	Ξ*-	Ω^{-}
$m_{ m s}=0~{ m MeV}$	2.0064	0.6688	-0.6688	-2.0064	1.338	0	-1.338	0.669	-0.669	0
$m_{ m s}=180~{ m MeV}$	2.1333	0.7111	-0.7111	-2.1333	1.440	0	-1.440	0.729	-0.729	0
LQCD [4] $(m_{\pi} = 131.2(13) \text{ MeV})$	-	-	_	_	1.1740(380)	-	-	0.5891(198)	-	_
LQCD [4] $(m_{\pi} = 213 \text{ MeV})$	1.9777(1458)	0.5181(981)	-0.6499(973)	-1.7090(1422)	1.1929(521)	-0.1367(685)	-1.2633(516)	0.5869(216)	-0.6682(382)	_
LQCD [4] $(m_{\pi} = 256 \text{ MeV})$	1.6956(1897)	0.5670(1479)	-0.5929(1167)	-1.7322(1718)	1.1462(720)	0.0148(542)	-1.0646(661)	0.5785(278)	-0.5424(303)	_
LQCD [3] $(m_{\pi} = 297 \text{ MeV})$	-	0.604(38)	_	_	-	-	-	-	-	_
LQCD [4] $(m_{\pi} = 302 \text{ MeV})$	1.9574(1552)	0.6374(976)	-0.4798(1063)	-1.4374(1331)	1.2839(636)	0.0654(444)	-1.0423(619)	0.6204(256)	-0.5459(299)	_
LQCD [3] $(m_{\pi} = 353 \text{ MeV})$	-	0.640(26)	_	_	_	_	_	_	_	_
LQCD [4] $(m_{\pi} = 373 \text{ MeV})$	1.7602(1035)	0.5215(639)	-0.5676(635)	-1.5872(1270)	1.1478(558)	-0.0130(323)	-1.1139(485)	0.5741(243)	-0.5702(230)	_
LQCD [3] $(m_{\pi} = 411 \text{ MeV})$	-	0.571(18)	_	_	_	_	_	_	_	_
LQCD [4] $(m_{\pi} = 432 \text{ MeV})$	1.8520(875)	0.6129(478)	-0.5949(489)	-1.8108(868)	1.2228(473)	0.0124(244)	-1.1765(450)	0.6059(213)	-0.5885(223)	_
LQCD [3] $(m_{\pi} = 490 \text{ MeV})$	-	0.578(13)	_	_	_	-	_	_	-	_
LQCD [3] $(m_{\pi} = 563 \text{ MeV})$	_	0.5887(98)	_	_	_	_	_	_	_	_
$\chi \mathrm{PT}~[6]$	2.25^{*}	-	_	_	_	-	-	_	_	_
RCQM[GBE] [7, 8]	2.24^{*}	_	_	_	1.499^\dagger	_	_	0.75^{\dagger}	_	_
LCSR [9]	$2.70\pm0.6^*$	_	_	_	_	_	_	_	_	_
PCQM [10]	1.863^{*}	-	-	-	1.242^\dagger	-	_	0.621^\dagger	-	-

[3] C. Alexandrou et al, PRD 87, 114513 (2013).
[4] C. Alexandrou et al, PRD 94, 034502 (2016).
[6] F. Jiang and B. C. Tiburzi, PRD 78, 017504 (2008).
[7,8] Ki-Seok Choi et al, PRD 82, 014007 (2010), FBS54, 1055 (2013).
[9] A. Kucukarslan et al, PRD 90, 054002 (2014).
[10] X. Y. Liu et al, PRC 97, 055206 (2018).

Additional numerical results

$m_{\rm s}=180~{\rm MeV}$	Δ^{++}	Δ^+	Δ^0	Δ^{-}	Σ^{*+}	Σ^{*0}	Σ^{*-}	Ξ^{*0}	Ξ^{*-}	Ω^{-}
$g_3^{(3)B}(0)$	346.1	115.4	-115.4	-346.1	303.9	0	-303.9	193.7	-193.7	0
$g_3^{(0)B}(0)$	7.822	7.822	7.822	7.822	1.622	1.622	1.622	-8.204	-8.204	-21.936
$g_3^{(8)B}(0)$	50.8	50.8	50.8	50.8	-60.0	-60.0	-60.0	-251.9	-251.9	-542.8
$\langle r_A^2 \rangle_B \; [{\rm fm}^2]$	0.447	0.447	0.447	0.447	0.438	_	0.438	0.431	0.431	_
$M_A \; [\text{GeV}]$	1.023	1.023	1.023	1.023	1.033	-	1.033	1.041	1.041	-

$$g_1^{(3)B}(Q^2) = \frac{g_1^{(3)B}(0)}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}, \quad \langle r_A^2 \rangle_B = \frac{-6}{g_1^{(3)B}(0)} \left. \frac{\partial g_1^{(3)B}(Q^2)}{\partial Q^2} \right|_{Q^2 = 0}$$

Summary & Outlook

• Summary

- We performed the axial-vector form factor calculations within the chiral quarksoliton model.
- We discussed the flavor SU(3) symmetry breaking contributions to the axialvector form factors.
- We compared the axial-vector form factors and constants with Lattice data and other model calculations.
- We have calculated the axial radii and masses for baryon decuplet as well.
- Outlook
- The axial-vector form factors with the quark contents.
- Transition form factors between the light baryons.
- The Axial-vector form factors for the heavy baryons.
- Tensor form factors.

Thank you for listening!!!

C. Alexandrou et al, PRD 94, 034502 (2016).

C. Alexandrou et al, PRD 94, 034502 (2016).

C. Alexandrou et al, PRD 94, 034502 (2016).

Triplet axial-vector form factors

Axial-vector constants for the baryon decuplet

$g_1^{(3)B}(0)$	Δ^{++}	Δ^+	Δ^0	Δ^{-}	Σ^{*+}	${\Sigma^{*}}^{0}$	Σ^{*-}	Ξ^{*0}	Ξ*-	Ω^{-}
$m_{ m s}=0~{ m MeV}$	1.9671	0.6557	-0.6557	-1.9671	1.3114	0	-1.3114	0.6557	-0.6557	0
$m_{ m s}=180~{ m MeV}$	1.9876	0.6625	-0.6625	-1.9876	1.3279	0	-1.3279	0.6654	-0.6654	0
LQCD [4] $(m_{\pi} = 131.2(13) \text{ MeV})$	-	-	_	_	1.1740(380)	-	-	0.5891(198)	-	_
LQCD [4] $(m_\pi = 213 \text{ MeV})$	1.9777(1458)	0.5181(981)	-0.6499(973)	-1.7090(1422)	1.1929(521)	-0.1367(685)	-1.2633(516)	0.5869(216)	-0.6682(382)	_
LQCD [4] $(m_\pi = 256 \text{ MeV})$	1.6956(1897)	0.5670(1479)	-0.5929(1167)	-1.7322(1718)	1.1462(720)	0.0148(542)	-1.0646(661)	0.5785(278)	-0.5424(303)	_
$\mathrm{LQCD}~[3]~(m_{\pi}=297~\mathrm{MeV})$	_	0.604(38)	_	_	_	_	_	_	_	_
LQCD [4] $(m_{\pi} = 302 \text{ MeV})$	1.9574(1552)	0.6374(976)	-0.4798(1063)	-1.4374(1331)	1.2839(636)	0.0654(444)	-1.0423(619)	0.6204(256)	-0.5459(299)	_
LQCD [3] $(m_{\pi} = 353 \text{ MeV})$	-	0.640(26)	_	_	_	-	-	_	_	_
LQCD [4] $(m_{\pi} = 373 \text{ MeV})$	1.7602(1035)	0.5215(639)	-0.5676(635)	-1.5872(1270)	1.1478(558)	-0.0130(323)	-1.1139(485)	0.5741(243)	-0.5702(230)	_
LQCD [3] $(m_{\pi} = 411 \text{ MeV})$	_	0.571(18)	_	_	_	_	_	_	_	_
LQCD [4] $(m_{\pi} = 432 \text{ MeV})$	1.8520(875)	0.6129(478)	-0.5949(489)	-1.8108(868)	1.2228(473)	0.0124(244)	-1.1765(450)	0.6059(213)	-0.5885(223)	_
LQCD [3] $(m_{\pi} = 490 \text{ MeV})$	_	0.578(13)	_	_	_	_	_	_	_	_
LQCD [3] $(m_{\pi} = 563 \text{ MeV})$	_	0.5887(98)	_	_	-	-	-	_	-	_
$\chi \mathrm{PT}$ [6]	2.25^{*}	_	_	_	_	_	_	_	_	_
RCQM[GBE] [7, 8]	2.24^{*}	_	_	_	1.499^\dagger	_	_	0.75^\dagger	_	_
LCSR [9]	$2.70\pm0.6^*$	_	_	_	_	_	_	_	_	_
PCQM [10]	1.863^{*}	-	-	-	1.242^\dagger	-	-	0.621^\dagger	_	_

[3] C. Alexandrou et al, PRD 87, 114513 (2013).

[4] C. Alexandrou et al, PRD 94, 034502 (2016).

[6] F. Jiang and B. C. Tiburzi, PRD 78, 017504 (2008).

[7,8] Ki-Seok Choi et al, PRD 82, 014007 (2010), FBS54, 1055 (2013).

[9] A. Kucukarslan et al, PRD 90, 054002 (2014).

[10] X. Y. Liu et al, PRC 97, 055206 (2018).

Additional numerical results

$m_{\rm s}=180\;{\rm MeV}$	Δ^{++}	Δ^+	Δ^0	Δ^{-}	Σ^{*+}	Σ^{*0}	Σ^{*-}	Ξ^{*0}	Ξ*-	Ω^{-}
$g_3^{(3)B}(0)$	267.7	89.2	-89.2	-267.7	228.0	0	-228.0	141.1	-141.1	0
$g_3^{(0)B}(0)$	24.76	24.76	24.76	24.76	1.795	1.795	1.795	-34.01	-34.01	-83.59
$g_3^{(8)B}(0)$	100.4	100.4	100.4	100.4	-10.29	-10.29	-10.29	-185.8	-185.8	-432.6
$\langle r_A^2 \rangle_B \; [{ m fm}^2]$	0.507	0.507	0.507	0.507	0.498	_	0.498	0.490	0.490	_
$M_A \; [{ m GeV}]$	0.960	0.960	0.960	0.960	0.969	-	0.969	0.976	0.976	-

$$g_1^{(3)B}(Q^2) = \frac{g_1^{(3)B}(0)}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}, \quad \langle r_A^2 \rangle = \frac{12}{M_A^2}$$

Preparation for the form factor calculation

Using parameter

 $m_{\pi} = 139.57 \text{MeV}, \ f_{\pi} = 93 \text{MeV}, \ M_c = 420 \text{MeV}, \ m_s = 180 \text{MeV}$ $D = 8 \text{fm}, \ \Lambda_1 = 0.377 \text{GeV}, \ \Lambda_2 = 1.428 \text{GeV}, \ m_0 = 6.13 \text{MeV}$

Calculated values

$M_{\rm cl}({\rm GeV})$	$I_1(\mathrm{fm})$	$I_2(\mathrm{fm})$	$K_1(\mathrm{fm})$	$K_2(\mathrm{fm})$	$\Sigma_{\pi N}(\text{MeV})$	$\langle \bar{q}q \rangle ({ m MeV}^3)$
1.2957	1.084	0.519	0.410	0.264	43.89	$-(239.51)^3$