2020 CENUM WORKSHOP

Cross-section measurement for K-p interactions at 1.8 GeV/c - New Σ*(1/2-) searching

Wooseung Jung* and Jung Keun Ahn for the E42 Collaboration Department of Physics, Korea University

The lowest excitation of baryons

: L = 1 excitation of a quark $(1/2^+ \rightarrow 1/2^-)$

 $\Lambda^{*}(1405)$ is lighter than N*(1535)

(Unquenched models)

To solve it, put the $q\overline{q}$ components in the baryons

 $\rightarrow N(1535)^* : [ud][us]s, \Lambda(1405)^* : [ud][sq]q \text{ with } qq = (uu + dd)/\sqrt{2}$

In the penta-quark models, new prediction existence of a $\Sigma(1380)*(1/2-)$

References.

Re-examination of old data

	$M_{\Sigma^*(3/2)}$	$\Gamma_{\Sigma^*(3/2)}$	$M_{\Sigma^*(1/2)}$	$\Gamma_{\Sigma^*(1/2)}$	χ^2/ndf (Fig. 1(left))
Fit1	1385.3 ± 0.7	46.9 ± 2.5			68.5/54
Fit2	$1386.1_{-0.9}^{+1.1}$	$34.9^{+5.1}_{-4.9}$	$1381.3_{-8.3}^{+4.9}$	$118.6^{+55.2}_{-35.1}$	58.0/51

Re-examination of old data

Predictions for the distribution of $\cos(\Lambda.K)$ for the reaction $K^-p \rightarrow \Lambda \pi^+\pi^-$

New high statistical experiment with large angle acceptance is required!

4

E42 Hadron experiment@J-PARC

Hyperon Spectrometer

Target: Diamond(Physics Run)

+ <u>C2H4(12 hours Beam Commissioning)</u>

 $\Delta p/p = 1-3\%$ for π and p

Inner target system → Large Acceptance

E42 Hadron experiment@J-PARC

HypTPC with the HTOF

32 Slats

PID: using dE/dx(HypTPC), TOF and p/q (HTOF)

Trigger condition : Multiplicity > 2

Dominant reactions	Cross-sections (mb)	Multiplicity
$K^-p \to K^-p$	8.130 ± 0.310	2
$K^{-}p \rightarrow K^{0}p\pi^{-}$	2.189 ± 0.139	4
$K^-p \to \Lambda \pi^+\pi^-$	1.696 ± 0.097	4

MC study

Rough yield estimation

Assumptions

Beam flux (10⁶ K⁻ per spill) ~ 2 x10⁵ Cross-sections ~ 1.696 mb

~ 35 $\Lambda \pi^+ \pi^-$ events generated per s

To do & Goals

Build a MC gen. for

- 1. HTOF Acceptance study
- 2. Generate expected diff. cross-section

& cos(Λ.K) distribution

Geant4 event display

Current status

For a test, events were generated assuming flat angular distributions

At this step, planning to study angular distribution of trigged events and check the coverage and acceptance of HTOF.

- There is prediction existence of a new $\Sigma^*(1/2-)$ around 1380 MeV
- At J-PARC, we have a plan to do amplitude analysis of Σ^*

• Going to generate the expected experimental results for future study

BACKUP

Time Projection Chamber "HypTPC"

- \bigcirc Octagonal prism field cage
- \bigcirc Inner target system \rightarrow Large Acceptance
- \bigcirc Triple GEM layers
 - (50 + 50 + 100 μm)
- \bigcirc 5768 readout pads
 - Inner(10 rows): 2.1-2.7×9 mm²
 - Outer(22 rows): 2.3-2.4×12.5 mm²

- \bigcirc Gating grid: ϕ 50 μ m, 1mm space
- \bigcirc Gas: P-10 (v_{max} ~ 5.3 cm /s)
- Gain ~ 104
- \bigcirc Position resolution < 300 μm
- $\bigcirc \Delta p/p = 1-3\%$ for π and p

HTOF

Time Resolution [ps]

Bias voltage dependence

Number of MPPC dependence

Scintillator & Light-guide study

Time resolution*(ps)			Scintillators	EJ-200	EJ-230	EJ-232	
Scintillators	EJ-200	EJ-230	EJ-232	Scintillation Efficiency	10,000	9,700	8,400
Without Light-guides	174 ± 1	156 ± 1	132 ± 1	(photons/1 MeV e ⁻)			
With Light-guides		125 ± 1	117 ± 1	Rise Time (ns)	0.9	0.5	0.35
* Measured value. Errors are statistical only.				Decay Time (ns)	2.1	1.5	1.6

