# pPb 8TeV Upsilon v2 status

KiSoo Lee







#### Idea of MC study for low-multiplicity



- Low-multiplicity range also need to retain enough Y
- Low-multiplicity subtraction is needed to estimate residual contribution from back-to-back jet correlations
- Ncoll == 1 is back-to-back jet correlation case
- Multiplicity 50 (31±18) was tentative multiplicity range



#### MC dataset

- 1. Check Y event with GENonly file
  - Contains tracks in the Y events for Ncoll==1 case
- 2. Check Y event with EPOS embedded file
  - Contains tracks in the Y events for Ncoll==1 case
  - Effect of Pb-ion also included from EPOS embedding
- 3. Check with MB EPOS file
  - Contains all Ncoll case
  - Advantage to calculate portion of Ncoll==1 case as function of multiplicity



#### GENonly sample



- Unembedded sample does not contain Pb effect
- Mean is 44 but peak position is around 30
  - Any function to describe this shape?
- No Ncoll information
  - Can not determine the range which is the Ncoll==1 is dominant



#### Embedded sample



- Pythia does not produce collision but particle
  - Genonly, embedded sample are both do not have Ncoll information
  - Even if embedded with EPOS, just tracks are added based on pythia
  - All Ncoll cases are integrated in the embedded sample



#### Minimum Bias



- EPOS MB sample has Ncoll information
- Portion of Ncoll==1 is very low even in multiplicity 20
- MB sample contains almost no Y due to low cross-section
  - Multiplicity distribution is different from that of  $\Upsilon$
  - The event containing Y produce more tracks

#### Minimum Bias(hard collision)



- One the collision should be hard scattering to produce  $\Upsilon$
- Hard scattering case also similar to soft scattering
- Even if the collision is hard scattering Y can not be produced due to cross-section





#### Summary of MC study

- 1. GEN only sample can show Y events for Ncoll==1 case
  - Can not describe pPb multiplicity
  - Can not determine Ncoll==1 dominant range
  - Need fitting function rather than mean of histogram
- 2. EPOS embedded sample
  - Can not distinguish high-and low multiplicity due to embedded tracks
- 3. MB sample
  - Almost no Y events due to low cross-section
  - Ncoll==1 multiplicity is lower than actual Y events multiplicity



#### From the other study







- High-multiplicity range determined from the pp and pPb charged hadron v<sub>2</sub>
- Long-range associated yield is 0 until multiplicity 40 regardless of system



#### Long-range associated yield



5

**KiSoo** Lee

#### Low-multiplicity range

- By correlating associators which is correlated with Y, back-to-back jet dominant range could be extracted
- Associators in the Y mass range (9 < m < 10) di-muon events are correlated
- Track-track long-range ( $|\Delta\eta| > 2$ ) associated yield is non-zero at the higher multiplicity than 50
- At the higher than multiplicity 50, there are more correlation except back-to-back jet
- At the lower than multiplicity 50, almost events are back-to-back jet correlation
- Multiplicity 0~50 can be used as low-multiplicity range to subtract residual back-to-back correlation





#### Low-multiplicity v<sub>2</sub>



- Previous issue about simultaneous fitting is resolved with  $p_{\text{T}}$  binning
- $[0, 4, 7, 10, 30] \rightarrow [0, 3, 6, 10, 30]$
- Yield was too poor for  $7 < p_T < 10$

#### High-multiplicity $v_2$ with new $p_T$ bin



- High-multiplicity  $v_2$  also calculated with new  $p_T$  binning
- One bin in the Y mass range is very low
- $v_2$  at 3 <  $p_T$  < 6 was lowest in the PbPb



#### Low-multiplicity subtraction

 Low-multiplicity subtraction is needed to estimate residual contribution from back-to-back jet correlation

$$v_{2}^{sub} = v_{2}(high) - v_{2}(low) \times \frac{N_{assoc}(low)}{N_{assoc}(high)} \times \frac{Y_{jet}(high)}{Y_{jet}(low)}$$

$$V_{jet}^{sig} = \frac{Y_{jet}^{peak} - (1 - f)Y_{jet}^{bkg}}{f}$$

• 
$$Y_{jet} = Y_{jet}(|\Delta \eta| < 1) - Y_{jet}(|\Delta \eta| > 2)$$



#### Jet yield ratio



$$Y_{jet}^{sig} = \frac{Y_{jet}^{peak} - (1 - f)Y_{jet}^{bkg}}{f}$$

- Signal fraction of each mass point is different
- Integrated Sig/(Sig+Bkg) is used as fraction

#### Low-multiplicity subtracted result



- Similar result at  $6 < p_T < 10$  but error bar is large
- At  $10 < p_T < 30$ , pPb v2 is still higher than 0

#### Summary & plan

- Low-multiplicity range is defined as 0~50 from associator study
- Y p<sub>T</sub> bin has changed:  $[0, 4, 7, 10, 30] \rightarrow [0, 3, 6, 10, 30]$
- Need to understand jet yield ratio (low-multiplicity is higher than highmultiplicity)
- Low-multiplicity subtracted v2 is smaller than 0.06
  - Non-zero at high  $p_T$
- Private MC is ready
  - Same amount with official (2 M)
- Presentation in di-lepton meeting (7/15 Wed.)
- Working meeting (7/17 Fri.)
- Presentation in flow meeting (7/20 Mon.)
- Request CADI in di-lepton meeting (7/21 Tue.)

# Back up







#### Long-range at 45 < multiplicity < 55



- At the p<sub>T</sub> higher than 7 GeV/c track-track long-range near-side yield is non-zero
- 0~50 is the maximum range as low-multiplicity



#### Simultaneous fit (0 < mult. < 50)





#### Simultaneous fit (0 < mult. < 50)





#### Simultaneous fit (90 < mult. < 300)





#### Simultaneous fit (90 < mult. < 300)





#### mean $\eta$ of $\Upsilon$



- Mean value of histogram is used as  $<\eta>$
- Lower than J/ $\psi$  because J/ $\psi$  used only forward events
- Trend is different from J/ $\psi$  but ratio between high and low shows no strong multiplicity dependence as J/ $\psi$
- Y case also can say that the effect from truncation are largely cancelled

#### Number of associator (90 < mult. < 300)



- -

KiSoo Lee

#### Number of associator (0 < mult. < 50)







# High-multiplicity 9.2 < m < 9.6













### High-multiplicity 9.0 < m < 9.8

28





-1

0

1

2

 $\Delta \phi$ 

3

4

# Low-multiplicity 9.2 < m < 9.6





-1

0

1

2

 $\Delta \phi$ 

3

4

# Low-multiplicity 9.0 < m < 9.8

#### Error propagation of Jet ratio

$$Y_{jet}^{sig} = \frac{Y_{jet}^{peak} - (1 - f)Y_{jet}^{bkg}}{f}$$

$$\sigma_{sig} = \sqrt{\left(\frac{\sigma_{peak}}{f}\right)^{2} + \left(\frac{(1 - f)\sigma_{bkg}}{f}\right)^{2}}$$

$$ratio = \frac{Y_{jet}^{high}}{Y_{jet}^{low}}$$

$$\sigma_{ratio} = \frac{Y_{jet}^{high}}{Y_{jet}^{low}} \times \sqrt{\left(\frac{\sigma_{sig}^{high}}{Y_{jet}^{high}}\right)^{2} + \left(\frac{\sigma_{sig}^{low}}{Y_{jet}^{low}}\right)^{2}}$$



#### Multiplicity jet comp. 9.2 < m < 9.6



- Shape is clear for high-multiplicity
- Difference
   between Maximum
   and Minimum is
   higher at the low multiplicity
- If  $\Delta \phi$ ==1 is high, relative jet yield should be reduced

#### Track p<sub>T</sub> effect

- In the low-multiplicity event, almost tracks are in the jet
- In the high-multiplicity event, there are more tracks not included in the jet region
- For the v2 analysis, associator track  $p_T$  is lower than 3 GeV/c
- If many tracks inside jet are rejected by 3 GeV/c cut, low p<sub>T</sub> non-jet tracks are getting more dominant in the high-multiplicity
- But low-multiplicity does not affect much from the track pT cut because the non-jet tracks are rare
- Definition of jet ratio is jet portion comparison between high and low multiplicity





#### Track p<sub>T</sub> effect



- Jet ratio increases as track  $p_T$  maximum cut increases
- Tracks inside jet portion is increased with the  $p_{\rm T}$  cut in the high-multiplicity