

Measurement of electrons from beauty-hadron decays in pp collisions at $\sqrt{s} = 13$ TeV

Jiyeon Kwon Inha University

CENuM Workshop 4 July 2020

Heavy quarks: charm & beauty

- Large masses $(m_q \gg \Lambda_{QCD})$
 - time of the QGP. ($t_{charm} \sim 1/m_c \sim 0.1 \text{ fm/c} < \tau_{OGP} \sim O(10 \text{ fm/c})$)
- Long lifetime

• Parton energy loss in the medium

- Prediction for parton energy loss in the medium: $\Delta E_q > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- the QGP can be studied.

pp collisions

- Verify pQCD calculations at LHC energies.
- Reference measurements for p-Pb and Pb-Pb collisions

 \rightarrow Produced via hard scatterings in early stage of heavy-ion collisions, compared to the formation

 \rightarrow Experience the full evolution of the system created in collisions \rightarrow Natural probe of the QGP

By separating beauty quarks from charm quarks, the mass dependence of the parton energy loss in

Strategy

- Beauty production measurement via electrons from semi-leptonic decays of beauty-hadron
 - Substantial branching ratio: $b \rightarrow e + X (\sim 11\%)$, $b \rightarrow c \rightarrow e + X (\sim 10\%)$
- **Impact parameter (IP):** Distance of the closest approach of a particle's reconstructed track to the primary vertex.
- b quarks hadronise mainly to B mesons which has long lifetime ($c\tau \approx 500 \ \mu m$) \Rightarrow Larger impact parameter of $B \rightarrow e$
- **IP distributions of electron contributions from:**
 - Semi-leptonic beauty-hadron decays → **SIGNAL!**
 - Semi-leptonic charm-hadron decays
 - Dalitz decays of light mesons
 - Photon conversions in the detector material
- **Beauty electrons are measured by fitting Monte Carlo** templates of IP distributions of signal and background contributions for each p_T bin.

Electron identification

- - The Time-of-Flight detector (TOF)
 - TOF measures the velocity β of the particles.

 $|TOF n\sigma| < 3\sigma$ -

Jiyeon Kwon (jkwon@cern.ch)

Electrons are identified using the Time Projection Chamber (TPC) and the Time-of-Flight detector (TOF).

Time Projection Chamber (TPC)

- TPC measures ionisation energy loss of charged particles passing through the gas volume in the TPC.

$$-1\sigma < TPC n\sigma < 3\sigma$$

MC template correction: p_T correction of B hadron and D meson

- $\frac{B \text{ hadron } p_T \text{ spectrum by FONLL calculation}}{B \text{ hadron } p_T \text{ spectrum in } MC}$ • $w_B = -$
- p_{T} of mother B hadron (or D meson).

Jiyeon Kwon (jkwon@cern.ch)

• IP of decay daughter depends on p_{T} of electron sources, but there's a discrepancy between data and MC.

 $w_D = \frac{Measured \ D^0 \ p_T \ spectrum}{D^0 \ p_T \ spectrum \ in \ MC}$

• With the weighting factor, the p_{T} of electrons from B hadron (or D meson) are weighted according to the

MC template correction: Yield correction for D hadrons (D+, D_s+ and Λ_c +)

- species have different decay lengths.
- The relative fraction of different D hadrons is corrected by scaling the yield of the D+, D_s + and Λ_c +.

•
$$w = \frac{Measured \ D \ hadron}{Measured \ D^0} \times \frac{D^0 \ in \ MC}{D \ hadron \ in \ MC}$$

Jiyeon Kwon (jkwon@cern.ch)

Wrong fraction of different charm species affects a shape of the charm template, because the each charm

Fitting MC templates to data

Raw yield of beauty electrons is measured by fitting MC templates to data.

Jiyeon Kwon (jkwon@cern.ch)

Data-driven TPC eID efficiency

- which describes each contributions of the particles.
- TPC eID efficiency = $\frac{integral \ of \ the \ electron \ fit}{}$ total integral of the electron fit

The TPC no distributions of electrons are plotted in different momentum bins and fitted with functions

$$in - 1 < TPCn\sigma < 3$$

Efficiency correction

- selection.
- The track cut and TOF PID efficiencies are calculated from MC: *Efficiency* =
- Total efficiency including data-driven TPC PID efficiency is used to correct raw yield.

Raw yield of beauty electrons is corrected by the track cut efficiency and PID efficiency for electron

(*N of beauty electrons after cuts*) (*N of beauty electrons before cuts*)

Invariant differential cross section of beauty electrons

- Cross section of 7 TeV is scaled to 13 TeV using a FONLL ratio of 13 TeV to 7 TeV.

Jiyeon Kwon (jkwon@cern.ch)

Summary and outlook of the analysis

- in pp collisions at $\sqrt{s} = 13$ TeV with ALICE.
- MC templates are corrected for p_{T} spectra and yields of mother particles.
- Raw yield is obtained by fitting the corrected MC templates to data and corrected with reconstruction and PID cut efficiencies.
- result.
- Systematic uncertainties will be studied.

Beauty production is studied via measurement of electrons from semi-leptonic decays of beauty-hadron

Electrons are identified using the Time Projection Chamber (TPC) and the Time-of-Flight detector (TOF).

Invariant differential cross section is calculated and compared with FONLL calculation and scaled 7 TeV

Backup

Dataset and quality cuts

Data		MC general purposed		MC enhanced		Remarks
Period	N of events	Period	N of events	Period	N of events	
LHC16k	128.88M	LHC18f1	37.45M	LHC18f4b	24.91M	pass2, AOD
LHC16l		LHC18d8				

Event selection					
Cut	Value				
Trigger	kINT7				
Vz	< 10 cm				
NcontribVertex	> 0				
NcontribSPDVertex	> 0				
Vz-Vz.spd	< 0.5 cm				
vertexResolution	< 0.25 cm				

Track selection					
Cut	Value				
Number of clusters on TPC	100				
Number of clusters on TPC for PID	80				
Number of cluster on ITS	3				
Ratio of TPC clusters	0.6				
Number of hits in SPD layers	2				
DCAr	< 1 cm				
DCAz	< 2 cm				
η	< 0.8				
Kink daughters	Rejected				
TOF nσ	$ n\sigma_{TOF} < 3$				
TPC no	-1 < nσ _{τPC} < 3				

