Big Bang Nucleosynthesis in a weakly nonideal plasma

Youngshin Kwon

Korea Aerospace U & CENuM

in collaboration with Dukjae Jang, Kyujin Kwak, Myung-Ki Cheoun Soongsil U UNIST Soongsil U

> 2nd CENuM Workshop July 3, 2020

Origin of elements

Standard BBN

BBN network calculation

Kawano, FERMILAB-Pub-92/04-A (1992) Two-body nuclear reaction rate: $\sigma(1+2\to3+4)$

 $R_{12}=N_1N_2\langle\sigma v\rangle_{12}$

Primordial abundances

Standard BBN prediction

Abundances as a function of baryon-to-photon ratio. Cosmic microwave background (CMB) constraint: $\eta = (6.094 \pm 0.063) \times 10^{-10}$

[Planck collaboration 2016]

Primordial ⁷Li problem

Spectra of metal-poor stars

Observed ⁷Li abundance is smaller than the SBBN prediction.

Plasma parameter

Ratio of mean potential energy and thermal kinetic energy

Primordial plasma

Debye shielding: ______ Locally dense electrons – Large chemical potential

Plasma oscillation

Collective motion of electrons Dispersion relation:

$$\omega^2 = \omega_p^2 + k^2 c^2$$

Distortion at low frequencies due to the non-ideality. [Opher & Opher, PRL (1997)]

Deviation of EM spectrum from blackbody

Primordial plasma

Non-Planckian distribution

Big bang nucleosynthesis in a weakly non-ideal plasma

Dukjae Jang,¹ Youngshin Kwon,^{2,3,*} Kyujin Kwak,⁴ and Myung-Ki Cheoun¹ ¹Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Republic of Korea ²Research Institute of Basic Science, Korea Aerospace University, Goyang 10540, Republic of Korea ³Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul 02841, Republic of Korea ⁴School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

We propose a correction of standard big bang nucleosynthesis (BBN) scenario to resolve the primordial lithium problem by considering a possibility that the primordial plasma can deviate from the ideal state. In the standard BBN, the primordial plasma is assumed to be ideal, particles and photons satisfying the Maxwell-Boltzmann and Planck distribution, respectively. We suggest that this assumption of the primordial plasma being ideal might oversimplify the early universe and cause the lithium problem. We find that deviation of photon distribution from the Planck distribution, which is parameterized with the help of Tsallis statistics, can resolve the primordial lithium problem when the particle distributions of the primordial plasma still follow the Maxwell-Boltzmann distribution. We discuss how the primordial plasma can be weakly non-ideal in this specific fashion and its effects on the cosmic evolution.

Simple ansatz for non-Planckian photon distribution

$$f_q = \frac{1}{\left[1 - (1 - q)\frac{E}{kT}\right]^{\frac{1}{q-1}} - 1}$$

For $q \rightarrow 1$, the Planck distribution is recovered.

 $\lim_{q \to 1} f_q = \frac{1}{e^{\frac{E}{kT}} - 1}$

$$q(T) = \theta(T - T_{\rm tr}) + \theta(T_{\rm tr} - T) q'$$

$q' = 1.027$ and $T_{\rm tr} = 4 \times 10^8 {\rm K}$						
	SBBN	This work	Observation			
$Y_{ m p}$	0.2474	0.2474	0.2446 ± 0.0029			
$D/H (10^{-5})$	2.493	2.525	2.527 ± 0.03			
$^{3}\mathrm{He}/\mathrm{H}~(10^{-5})$	1.092	0.9253	$\leq 1.1 \pm 0.2$			
$^{7}\mathrm{Li/H}\ (10^{-10})$	5.030	1.677	1.58 ± 0.31			
		-				

Photo-disintegration reaction

using a detailed balance relation between the forward and reverse cross sections.

Photo-disintegration reaction

Reaction rate

For a reaction in the form of $\,3+\gamma \rightarrow 1+2$

$$\begin{split} N_{\gamma} \langle \sigma c \rangle_{3\gamma} &= \frac{m_{12}}{\pi^2 \hbar^3} \, \frac{g_1 g_2}{g_3 (1 + \delta_{12})} \\ &\times \int_0^\infty \sigma_{12}(E) \, E \, \frac{1}{\left[1 - (1 - q) \frac{E + Q}{kT}\right]^{\frac{1}{q - 1}} - 1} \, dE \end{split}$$

using a detailed balance relation between the forward and reverse cross sections.

Photon energy density

Photon energy density

$$\rho_{\gamma} = \frac{(kT)^4}{(\hbar c)^3} \frac{\pi^2}{15} \frac{1}{(4-3q)(3-2q)(2-q)}$$

The condition for the energy conservation at the moment of transition

$$\rho_{\gamma\,(q=1)} = \rho_{\gamma\,(q>1)}$$

leads to the sudden temperature drop.

Freeze-out time

The temperature drop advances the freeze-out time of the light elements.

Cosmic Microwave Background

Restoration to blackbody

$$q' = 1.027$$
 at $T_{\rm tr} = 4 \times 10^8 \,{\rm K}$
 $q = 1$ at $T_{\rm re} = 2 \times 10^8 \,{\rm K}$

	w/o res	w/ res	Observation
$Y_{\rm p}$	0.2474	0.2474	0.2446 ± 0.0029
D/H (10^{-5})	2.525	2.503	2.527 ± 0.03
$^{3}\mathrm{He}/\mathrm{H}~(10^{-5})$	0.9253	0.9322	$\leq 1.1 \pm 0.2$
$^{7}\mathrm{Li/H}\ (10^{-10})$	1.677	1.664	1.58 ± 0.31

Summary

Primordial lithium problem

Discrepancy between the observation and the prediction of ⁷Li abundance.

Idea

Large electron chemical potential due to the positron annihilation. Possibility of nonideal BBN plasma.

Possible solution

Non-Planckian distribution of photons

Working on

Solving the Boltzmann equation for photon

$$E\frac{\partial f}{\partial t} - \frac{\dot{a}}{a} |\mathbf{p}^2| \frac{\partial f}{\partial E} = \mathbf{C}[f]$$

q' = 1.027 at $T_{\rm tr} = 4 \times 10^8 \,{\rm K}$ q = 1 at $T_{\rm re} = 2 \times 10^8 \,{\rm K}$

	w/o res	w/ res	Observation
$Y_{ m p}$	0.2474	0.2474	0.2446 ± 0.0029
D/H (10^{-5})	2.525	2.503	2.527 ± 0.03
$^{3}\mathrm{He}/\mathrm{H}~(10^{-5})$	0.9253	0.9322	$\leq 1.1 \pm 0.2$
$^{7}\text{Li/H} (10^{-10})$	1.677	1.664	1.58 ± 0.31

THANK YOU for your attention