Recent Study of Hadronic Λ_c⁺ Decays at Belle

July 3, 2020

Seongbae Yang (for Belle Collaboration)

- Physics beamtime: 1999~2010 years
- √s= ~10.6 GeV
- Huge statistics, $\sim 10^9 B\overline{B}$ pairs, $\sim 1 \text{ ab}^{-1}$ integrated luminosity
- Baryon production at Belle
 - B meson decay.
 - $-e^+e^- \rightarrow c\bar{c}$, direct production of charmed baryons.
 - $\Upsilon(1s)$ decay, enhanced baryon fraction.

1. DCSD, $\Lambda_c^+ \rightarrow p K^+ \pi^-$

Doubly Cabibbo-Suppressed Decay, $\Lambda_c^+ \rightarrow pK^+\pi^-$

• Doubly Cabibbo-suppressed decay: $c \rightarrow d$ and $W^+ \rightarrow u\bar{s}$ at the same time.

→ $\frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)}$ is expected to be lower than tan⁴θ_C(= 0.00285).

• The contribution of W-exchange channel can be extracted.

1. DCSD, $\Lambda_{\rm c}^+
ightarrow p K^+ \pi^-$

 Using the full data sample of Belle, 980 fb⁻¹, we clearly observed the DCS decay.

 $= \frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} = (2.35 \pm 0.27(Stat.) \pm 0.21(Syst.)) \times 10^{-3}$

 Comparing with the theoretical expectation (0.28%), the contribution of W-exchange channel is not large.

$\Lambda_c \rightarrow \Sigma \pi \pi$ Decays

- $\Sigma \pi$ scattering length and $\Lambda(1405)$ study.
- 711 fb⁻¹ data sample an energy at or near the $\Upsilon(4S)$.
- Signal yield extracted using a model-independent way:

Efficiency for each bin. \rightarrow Yield for each bin \rightarrow Efficiency-corrected yield for each bin. \rightarrow Add them.

• The most precise measurement.

*PRD 98, 112006

Decay Ratio	Branching Fraction Ratio
$\frac{B(\Lambda_c^+ \to \Sigma^+ \pi^- \pi^+)}{B(\Lambda_c^+ \to pK^- \pi^+)}$	0.719±0.003±0.024 *First measurement
$\frac{B(\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0)}{B(\Lambda_c^+ \to p K^- \pi^+)}$	0.575±0.005±0.036
$\frac{B(\Lambda_c^+ \to \Sigma^+ \pi^0 \pi^0)}{B(\Lambda_c^+ \to p K^- \pi^+)}$	0.247±0.006±0.019

3. $\Lambda^+_{
m c} o p K^- K^+ \pi^0$ and $\Lambda^+_{
m c} o p K^- \pi^+ \pi^0$

$\Lambda_{\rm c}^+ ightarrow p K^- K^+ \pi^0$ and $\Lambda_{\rm c}^+ ightarrow p K^- \pi^+ \pi^0$

- Hidden-strangeness pentaquark, $P_s^+(uuds\bar{s})$, search.
- 915 fb⁻¹ data sample at or near the $\Upsilon(4S)$ and $\Upsilon(5S)$.

- $B(\Lambda_c^+ \rightarrow pK^-K^+\pi^0)_{NR} < 6.3 \times 10^{-5}$, first upper limit report (less than 3σ significance).
- $\frac{B(\Lambda_c^+ \to pK^-\pi^+\pi^0)}{B(\Lambda_c^+ \to pK^-\pi^+)} = 0.685 \pm 0.007 \pm 0.018$, the most precise measurement.

Motivation

• A new pK^- peak in $\Lambda_c^+ \rightarrow pK^-\pi^+$: a new resonance Λ^* ?:

→ Strong coupling to $\Lambda \eta$?

- Branching fraction of $\Lambda_c^+ \rightarrow \Lambda \eta \pi^+$
 - Precise measurement by using the Belle data sample.

Experiment	Number of Signal Events	${\cal B}(\Lambda_c^+ o \eta \Lambda \pi^+) / {\cal B}(\Lambda_c^+ o p K^- \pi^+)$
CLEO [6]	11	$0.41 \pm 0.17 \pm 0.10$
CLEO [7]	116	$0.35 \pm 0.05 \pm 0.06$
Experiment	Number of Signal Events	$\mathcal{B}(\Lambda_c^+ \to \eta \Sigma(1385)^+) / \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$
CLEO [7]	54	$0.17 \pm 0.04 \pm 0.03$

• Hyperon study in $\Lambda_c^+ \rightarrow \Lambda \eta \pi^+$ weak decay.

- ex) Λ(1670)

VALUE (MeV) 1660 to 1680 (≈ 1670)	DOCUMENT ID OUR ESTIMATE	TECN	COMMENT
VALUE (MeV) 25 to 50 (≈ 35) OUR	ESTIMATE	TECN	COMMENT

 \rightarrow Only partial wave analysis results in PDG

Efficiency Estimation over Dalitz Plots

• Efficiency estimated over the Dalitz plots.

 \rightarrow To avoid uncertainty from resonant structures.

Signal Extraction over Dalitz Plane

• $M(\Lambda\eta\pi^+)$ and $M(pK^-\pi^+)$ spectra

 $\Lambda_{c}^{+} \rightarrow \Lambda \eta \pi^{+}$: a gaussian + two bifurcated gaussian functions $\Lambda_{c}^{+} \rightarrow \Sigma^{0} \eta \pi^{+}$: signal MC sample Background: polynomial function

 $\Lambda_c^+ \rightarrow pK^-\pi^+$: two gaussian functions Background: polynomial function • $\Lambda\eta\pi^+$ signal extraction over Dalitz plot

$$y = \sum_{i} \frac{y_i}{e_i}$$

* *i*: each bin

\rightarrow 741000 \pm 7000

• $pK^-\pi^+$ signal extraction over Dalitz plot

$$y = \sum_{i} \frac{y_i}{e_i}$$

* *i*: each bin

\rightarrow 10047000 \pm 10000

Branching fractions

$$\frac{\mathcal{B}(\text{Decay Mode})}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = \frac{y(\text{Decay Mode})}{\mathcal{B}_{\text{PDG}} \times y(\Lambda_c^+ \to pK^-\pi^+)}$$

Decay Mode	$\frac{\mathcal{B}(\text{Decay Mode})}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}$	$\mathcal{B}(\text{Decay Mode})[\%]$
$\Lambda_c^+ \to \eta \Lambda \pi^+$	$0.293 \pm 0.003 \pm 0.014$	$1.84 \pm 0.02 \pm 0.09 \pm 0.09\%$
$\Lambda_c^+ \to \eta \Sigma^0 \pi^+$	$0.120 \pm 0.006 \pm 0.006$	$(7.56 \pm 0.39 \pm 0.37 \pm 0.39) \times 10^{-3}$

* $\Lambda_c^+ \rightarrow \Sigma^0 \eta \pi^+$ yields are not extracted over Dalitz plot.

$M(\Lambda\eta)$ and $M(\Lambda\pi^+)$ Spectra

• Λ_c^+ yields as a function of $M(\Lambda \eta)$ and $M(\Lambda \pi^+)$

- By fitting the $M(\Lambda\eta\pi^+)$ distributions for each bin.

PDFs for $\Lambda(1670)$ and $\Sigma(1385)^+$ peaks

Relativistic partial width BW function,

$$\frac{dN}{dm} \propto \frac{m\Gamma(m)}{\left(m^2 - m_0^2\right)^2 + m_0^2 \left(\Gamma(m) + \Gamma_{\text{others}}\right)^2},$$

with

$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \left(\frac{q}{q_0}\right)^{2L+1} F(q),$$

* Γ_{others} : sum of partial widths for other decays F(q): 1 for S-wave and $(1 + R^2 q_0^2)/(1 + R^2 q^2)$ for P-wave

4. $\Lambda_c^+ \rightarrow \Lambda \eta \pi^+$

Fits to $M(\Lambda \eta)$ and $M(\Lambda \pi^+)$ Spectra

Summary

Belle beamtime was over ~10 years ago, but new results are still coming out.

1. New Λ_c^+ decays were observed and several branching ratios were precisely measured. - $\Lambda_c^+ \rightarrow pK^+\pi^-$, $\Lambda_c \rightarrow \Sigma\pi\pi$, and $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$ 2. We will soon publish new results of $\Lambda_c^+ \rightarrow \Lambda\eta\pi^+$ decay.

3. Analysis of $\Lambda_c^+ \rightarrow p K_s^0 \pi^0$ decay is in progress by 김영준.

There are still many ongoing analyzes for baryon studies.