R_{AA} of electrons from open beauty-hadron decays in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE detector

Jonghan Park

Inha University

CENuM workshop

2020-07-04

INHA UNIVERSITY

J. Park (Inha Univ.)

CENuM workshop

Physics Motivation

- ALICE aims at investigating the properties of the quark-gluon plasma (QGP)
- Heavy quarks (charm & beauty)
 - Created in the early stage of the collisions
 - Experience the full evolution of the medium
- In-medium energy loss
 - Lose their energy via collisions and radiations
 - Expected to depend on color charge and mass $\Delta E_{q} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$
- Evaluate the medium effects by

$$R_{\rm AA} = \frac{l}{\langle T_{\rm AA} \rangle} \frac{{\rm d}N_{\rm AA}/p_{\rm T}}{{\rm d}\sigma_{\rm pp}/p_{\rm T}}$$

Hint of the mass dependence of the in-medium energy loss by comparison of R_{AA} between charm and beauty

ALICE detector

- Study beauty quark production via electrons from open beauty-hadron decays
 - Substantial branching ratio : $B \rightarrow e + X$ (~10%), $B \rightarrow D \rightarrow e + X$
- Use specific characteristic of the beauty hadrons
 - Large decay length of beauty hadrons : $c\tau\approx 500\,\mu{\rm m}$
 - Wide distribution of IP (impact parameter)
 - **IP** : DCA (distance of closest approach) in the plane perpendicular to the beam direction

Steps

- Select electron candidates passing track quality cuts and eID cuts
- Fit the IP distribution of the inclusive electrons in data using templates from Monte Carlo (MC) simulation
- Apply efficiency correction obtained from MC

Template fit method

- Based on maximum likelihood approach
- Templates obtained from MC (HIJING+PYTHIA)
 Beauty, Charm, Dalitz, Conversion
- All templates are corrected to have realistic IP distributions
 - IP mean and resolution correction [backup]
 - p_{T} correction for hadrons decaying into electron
 - Charm hadron yield correction

- *p*_T spectra of hadrons containing heavy quark have harder shape than the measured one (or theory)
 - Since heavy quarks are enhanced to increase statistics
- Weighting factor for D mesons : $w_{\rm D} = p_{\rm T, D^0}^{\rm data}/p_{\rm T, D^0}^{\rm mc}$
 - Slope of spectrum of other D mesons are similar with D⁰ spectrum
- The weight makes p_T shape in MC as one in data
- Λ_c correction is done with the same way (backup)

Corrections for charm template

1954

Species	cτ (μm)
D+	311.8
D ⁰	122.9
Ds	151.2
Λ_{c}	60.7

- Different charm species have different decay length
 - Different fraction makes incorrect templates
 - Need to correct the amount of each hadrons
- Use fraction of D⁺, D_s, Λ_c w.r.t D⁰ measured in data
- Since we make electron templates, branching ratio should be considered
- Each fractions are well matched with data after p_T correction
 - In case D_s/D^0 , artificial factor is applied to match the ratio in data

- Not possible to use the same approach for beauty hadrons
 - Beauty decay electrons provide the information of the beauty quark/hadron p_T distribution
 - Not available prior to the measurement
- · Instead, use theoretical calculations for the references
 - In this analysis, adopted FONLL and TAMU model
- Weighting factor for B hadrons : $w_{\rm B} = \text{FONLL}/p_{\rm T, B}^{\rm mc} \times R_{\rm AA}^{\rm TAMU}$
- No additional fraction correction since all beauty hadrons have similar decay length

Invariant yield of beauty-decay electrons

- 1954
- Electrons from beauty-hadron decays in pp and 30-50% Pb-Pb at 5.02 TeV
 - Measured p_T range : $2 < p_T < 8$ GeV/c
 - pp reference multiplied by $\langle {\cal T}_{AA} \rangle$: nuclear thickness function
 - Observed suppression in Pb-Pb collisions above 2 GeV/c

- R_{AA} of beauty decay electrons in 30-50% Pb-Pb collisions at 5.02 TeV
- Compared with 0-10% result (left) and HFe RAA (right)

- Beauty production via electrons from beauty-hadron decays in Pb-Pb collisions at 5.02 TeV with ALICE detector at the LHC
- Signal extraction is done by performing template fit method
 The templates are corrected to have realistic IP distributions
- Beauty decay electrons are measured from $2 < p_T < 8 \text{ GeV/c}$
- Observed beauty quark suppression in Pb-Pb collisions w.r.t pp reference
- In the RAA comparisons,
 - Less suppression in semi-central case than most central case
 - Beauty quarks are less suppressed than charm quarks

- Observed IP differences between data and MC in Pb-Pb 5.02 TeV
 - First hypothesis is that happens due to mis-alignment during maintenance period
- Check for the IP with charged pion channel
 - Charged pions are mostly coming from the primary vertex
 - Easy to check the impact parameter mean and resolution
- Impact parameter mean and resolution obtained from Gaussian fit parameters

Corrections for impact parameter

Corrections for charm template

• Weighting factor for Λ_c : $w_{\Lambda_c} = p_{T,\Lambda_c}^{data} / p_{T,\Lambda_c}^{mc}$

