

Ξ^{0}_{c} production via semi-leptonic decay in pp collisions at $\sqrt{s} = 13$ TeV

2020.07.03 **CENum Workshop**

Jinjoo Seo*, Inha University*

- Motivation

• QGP probe with Heavy quarks

- Charm and beauty quarks are produced in initial hard-scattering processes with high Q², transported through the full medium created in the collisions.
- Charm hadronization mechanisms can be studied using meson and baryon ratio such as D, Λ_c , Ξ_c ,...
- Provide new constraints on fragmentation function of charm quarks.
- Provide the severe consequences of an enhanced production of baryons relative to mesons for the total charm cross-section.

• pp collisions

- Reference for p-Pb and Pb-Pb collisions.
- Testing ground for perturbative QCD calculations.

Motivation

- Analysis flow

- e selection

- Detector
 - Time Of Flight(TOF) and Time Projection Chamber(TPC)
 are used to identify electron.
- \cdot no distribution
 - e PID cuts applied in this analysis

TOF nol<3, $-3.9+1.17P_{T}-0.094P_{T}^{2}$ <TPC no<3

- **E** selection

E reconstruction ullet

- Ebaryons are reconstructed using the decay chain $\Xi \rightarrow \pi \Lambda$, followed by $\Lambda \rightarrow p\pi$.
- Ξ topology cuts are applied to remove the backgrounds.

Analysis

• Pion produced from Ξ -and Λ can be preferentially selected using mother particle's lifetimes. ($c\tau \sim 4.91$ cm and 7.89 cm)

- Raw yield of Ξ^{0}_{c}

- - are made.
 - yield.
 - shown due to missing neutrino.

- Remove background electron

Background electron

- ●
- photonics electrons.
- The efficiency $\varepsilon_{\text{prefilter}}$ is calculated using real data as $\epsilon_{\text{Prefilter}} =$

CENuM Workshop 2020.07.04

Analysis

Background electrons from Dalitz decay and gamma conversions can be removed using electron pair mass information. • The invariant mass distribution of electron pairs has a peak around 0 GeV/c², which corresponds to the contributions from

> $N_{e\Xi}(same \ sign \ mass \ cut \ on)$ $N_{e\Xi}(mass \ cut \ off)$

7

- Remove bottom baryon contribution

- Bottom baryon contribution in WS
 - In the WS spectra, there are contributions from bottom baryons, such as $\Xi_b \rightarrow e \Xi v$
 - The shape of the transverse momentum distribution of the Ξ_b baryon is assumed to be the same as Λ_{b} .
 - To scale 7TeV Λ_b to 13TeV Λ_b , it its assumed that baryon and meson energy dependence of fragmentation function are same. • The Ξ_b spectrum is further processed to take into account the detector acceptance, efficiency.

 - $e \equiv pair$ from Ξ_b is added to $e \equiv pair$ from RS-WS.

CENuM Workshop 2020.07.04

- Unfolding

Response matrix

- The response matrix is prepared in two steps
 - 1) The response matrix is obtained using the $\Xi_c^0 p_T$ distribution generated with MC.
 - 2) The resulting Ξ_c^0 distribution is used, to produce the response matrix, for the second iteration.

• Unfolding

- The transverse momentum distribution of eEpairs is corrected for the missing momentum of the neutrino using unfolding techniques.
- Convergence of the Bayesian unfolding is achieved after three iterations.
- Refolding procedure is performed to check the unfolding stability.

- Efficiency correction

- Efficiency
 - calculated.
 - The inclusive efficiency ε_{total} is calculated as

Analysis

• To obtain the corrected spectra from the raw counts, the acceptance and efficiency correction factors as a function of p_{T} is

- Weighting procedure

- Weighting
 - Weighting procedure is needed since p_{T} distributions of the MC Ξ_{c}^{0} and real data are different.
 - Data spectrum is taken after computing the corrected p_{T} spectrum with unweighted efficiency. •
 - Exponential function is used to fit p_{T} spectrum and weighting factor. ullet

Analysis

Weighting factor = $\frac{N_{\Xi_c}(Data)}{N_{\Xi_c}(MC)}$

- Average of cross sections

Cross section •

- The $p_{\rm T}$ differential cross sections of $\Xi^0_{\rm c}$ is calculated as
- The Ξ_c^0 cross section via semi-leptonic channel and hadronic channel are averaged.
- The measurements of Ξ_{c}^{0} via semi-leptonic and average of two decay channels are compatible.

CENuM Workshop 2020.07.04

$$Br\frac{d\sigma^{\Xi_{c}^{0}}}{dp_{\mathrm{T}}dy} = \frac{N_{\Xi_{c}^{0}}^{raw}}{2 \cdot \Delta p_{\mathrm{T}}\Delta y \cdot (Acc \times \epsilon \times \epsilon_{\Xi_{tag}}) \cdot L_{int}}$$

- Ξ^{0}_{c} production in pp at 13TeV

Energy dependency

• Energy dependences are shown(5,7 and 13 TeV).

Constraint branching ratio

• Branching ratio fraction is calculated using Ξ^{0}_{c} measurements.

Measurement comparison •

- Ξ_{c}^{0} measurement is compared with D⁰ and Λ_{c}^{+} .
- Model comparison
 - The measurement ratio is compared with model.
 - The measurement provides constraints on model calculations.

ALI-PREL-344835

CENuM Workshop 2020.07.04

Result

- Summary and Plan

• Summary

- Ξ_c^0 production is being studied via semi-leptonic decay in pp collision at 13 TeV.
- Electrons are selected using PID cuts and electron pair mass information, Ξ candidates are selected using PID cuts.
- The electron loss caused by the misidentification of photonic electrons is confirmed via cut efficiency.
- The $e \equiv pair$ subtraction method is used to remove the background and get raw yield.
- The unfolding is used to corrected missing momentum of neutrino.
- Because p_{T} distributions of the MC Ξ_{c}^{0} and real data are different, weighting procedure is performed.
- The cross section is calculated using weighted spectra, weighted efficiency.
- The Ξ_{c}^{0} production via semi-leptonic channel and hadronic channel are averaged and average one shows energy dependence.
- The Ξ_c^0 measurement is compared with D⁰ and Λ_c^+ , and provides constraints on model calculations and branching ratio fraction.

• Plan

Feeddown correction will be done.

Summary and Plan

Back up

- Cut list

Event cut variables

Physics selection

Primary vertex

Pile up

Track cut variables	Cuts	Xi cut variables	Cuts
Track Filter bit	kTrkGlobalNoDCA	Number of CrossedRows	>70
Number of CrossedRows	>70	CrossedRows over findable clusters	>0.77
CrossedRows over findable clusters	>0.8	Λ Mass tolerance (MeV/c2)	7.5
Number of TPC PID clusters	>50	Ξ Mass tolerance (MeV/c2)	8
Ratio to findable cluster	>0.6	DCAof V0 to PV(cm)	>0.03
ITS/TPC refit	TRUE	DCA f VO daughters PV (cm)	>0.073
Number of ITS cluster	>=3	V0 cosine pointing angle to Ξ vertex	>0.983
pt	>0.5	DCA of bachelor track to PV (cm)	>0.0204
lηl	<0.8	VO decay length (cm)	>2.67
SPD hit	Both	Ξ decay length (cm)	>0.38
TOF nσ	<3	TPC nσ (proton)	<4
TPC no	f(P _T) ~ 3	TPC nσ (pion)	<4
	2		

 $f(P_{\rm T}) = -3.9 + 1.17 P_{\rm T} - 0.094 P_{\rm T}^2$

D2H meeting, 2020.06.26

Cut list

Cuts

AliVEvent::kINT7

Within 10cm

Rejection

- Fit Λ_b 7TeV measurement using Tsallis function
 - The Ξ_b baryons are not measured at LHC energies. \rightarrow Assumption : $\Xi_b p_T$ shape is same as Λ_b
 - Λ_b was measured by CMS and LHCb at 7TeV.
 - CMS measurement is used to fit the spectrum down to 0GeV pT. (*Phys. Lett.*, B714:136–157, 2012)
 - LHCb measurement is not used due to the difference in the rapidity coverage from ALICE.

- Λ_b 7TeV measurement is scaled to 13TeV by FONLL
 - Since Λ_b was measured at 7TeV, energy scaling is needed using FONLL.
 - There is no Λ_b 13TeV spectrum in FONLL but there is B meson spectrum.
 - Assumption : B ratio (13TeV/7TeV) is same as Λ_b ratio (13TeV/7TeV)
 - → Baryon and meson energy dependence of fragmentation function are same.
 - 7TeV Λ_b cross section is scaled to 13TeV Λ_b by scale factor obtained B meson ratio.

D2H meeting, 2020.06.26

- Multiply branching ratio fraction
 - CMS measurement contains branching ratio Λ_b to $J/\psi\Lambda$.

$$\frac{\mathrm{d}\sigma(\mathrm{pp} \to \Lambda_{\mathrm{b}} X)}{\mathrm{d}p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}} \times \mathcal{B}(\Lambda_{\mathrm{b}} \to \mathrm{J}/\psi \Lambda) = \frac{n_{\mathrm{sig}}}{2 \cdot \epsilon \cdot \mathcal{B} \cdot \mathcal{L} \cdot \Delta p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}},$$

- Branching ratio fraction is multiplied to 13TeV Λ_b cross section to get a Ξ_b cross section.
 - Branching ratio is obtained at PDG

$$\frac{BR(b \to \Xi_b)BR(\Xi_b \to e\Xi\nu)}{BR(b \to \Lambda_b)BR(\Lambda_b \to J/\Psi\Lambda)} = \frac{3.9 \times 10}{5.8 \times 10}$$

$$\begin{array}{lll} \Gamma_{1} & \Xi^{-}\ell^{-}\overline{\nu}_{\ell}X \times \mathsf{B}(\overline{b} \to \overline{\Xi}_{b}) & (3.9 \pm 1.2 \) \times 10^{-4} \\ \Gamma_{1} & J/\psi(1S)\Lambda \times \mathsf{B}(b \to \Lambda_{b}^{0}) & (5.8 \pm 0.8 \) \times 10^{-4} \end{array}$$

D2H meeting, 2020.06.26

- Multiply \(\mathcal{\Xi}_b\) efficiency
 - To get a Ξ_b yield in pp collisions at 13TeV, efficiency and some factors are multiplied.

$$N_{\Xi_b}^{raw} = Br \frac{d\sigma^{\Xi_b}}{dp_{\mathrm{T}} dy} 2\Delta p_{\mathrm{T}} \Delta y \cdot \epsilon \cdot L_{int}$$

- L_{int} is calculated same as 13TeV Ξ_c analysis.
- Cuts are applied which same as Ξ_c analysis (track cut, Xi topology cut, pair cut ...)

D2H meeting, 2020.06.26

$$\epsilon = \frac{\Xi_b(Reco, WS)}{\Xi_b(Gen)_{|y|<0.5}}$$

- Convert $\Xi_b p_T$ to $e \Xi p_T$ using response matrix
 - Ξ_{b} spectrum is folded to e Ξ spectrum using \bullet response matrix
 - Bin by Bin folding is done.
 - Ξ_b contribution in WS is 2% at low p_T region, and 10% at high $p_{\rm T}$ region.
 - At high p_{T} , b production increases.

Current Status

- Correction of oversubtraction caused by bottom baryon

10-

Entrie,

10 |

- Convert $\Xi_b p_T$ to $e \Xi p_T$ using response matrix
- **Convert** $\Xi_b p_T$ to $e \equiv p_T$ using response matrix Ξ_b spectrum is folded to $e \equiv$ spectrum using • $(d^{2}\sigma)/(dp_{T}dy)$ response matrix
 - Bin by Bin folding is done.
 - Ξ_b contribution in WS is 2% at low p_T region, and 10% at high $p_{\rm T}$ region.
 - At high p_{T} , b production increases.
 - $e\Xi$ pair from bottom baryon is added to $e\Xi$ pair from RS-WS.
 - Bottom baryon contribution increases the cross section 1~7%.

Merge measurement by hadronic decay and by electronic decay

- ➡ Include systematic of BR

Merged cross section

$$\begin{split} w_{i}^{uncorr} &= \sqrt{\left(\frac{\sigma_{i}^{stat}}{N_{i}}\right)^{2} + \left(\frac{\sigma_{i}^{syst}}{N_{i}}\right)^{2}} \\ &\leq N > = \frac{N_{h} * \frac{1}{w_{h}^{2}} + N_{e} * \frac{1}{w_{e}^{2}}}{\frac{1}{w_{h}^{2}} + \frac{1}{w_{e}^{2}}} \\ &\leq N > = \frac{\sqrt{\left(\sigma_{h}^{stat} * \frac{1}{w_{h}^{2}}\right)^{2} + \left(\sigma_{e}^{stat} * \frac{1}{w_{e}^{2}}\right)^{2}}}{\frac{1}{w_{h}^{2}} + \frac{1}{w_{e}^{2}}} \\ &< \sigma_{stat} > = \frac{\sqrt{\left(\sigma_{h}^{syst} * \frac{1}{w_{h}^{2}}\right)^{2} + \left(\sigma_{e}^{syst} * \frac{1}{w_{e}^{2}}\right)^{2}}}{\frac{1}{w_{h}^{2}} + \frac{1}{w_{e}^{2}}} \\ &< \sigma_{syst} > = \frac{\sqrt{\left(\sigma_{h}^{syst} * \frac{1}{w_{h}^{2}}\right)^{2} + \left(\sigma_{e}^{syst} * \frac{1}{w_{e}^{2}}\right)^{2}}}{\frac{1}{w_{h}^{2}} + \frac{1}{w_{e}^{2}}} \end{split}$$

Results: constrain on decay branching ratio (default)

Fit hadronic decay from 1 GeV/c, then fit electronic decay by fixing the shape obtained from hadronic decay:

- 1)
- 2) In both hadronic and electronic decay, considering only stat., fit to extract stat. uncertainty 0.09225
- 3) from hadronic decay to correlated syst. uncertainties can be obtained
- 4) uncertainties can be obtained
- 5) limit separately
- Extract uncorrelated syst. from step 1) according to step 2) 6)

7)

Final BR (electronic/hadronic): $R(e/h) = 1.280 \pm 0.092^{+0.161}_{-0.131}$

In both hadronic and electronic decay, considering stat. and uncorrelated syst., fit to extract central value 1.280 and stat. + uncorr syst. 0.09268

Move points up and down according to pt correlated syst. uncertainties in hadronic decay and fix central points in electronic decay, the contribution

The same way as step 3), just change the hadronic decay to electronic decay, the contribution from electronic decay to correlated syst.

Sum in quadrature step 3) and 4) to combine hadronic and electronic decay contribution to correlated syst. uncertainty for upper limit and lower

11

Results: different options to estimate R(e/h)

- BR electronic/hadronic [R(e/h)]: *
 - PDG 2018: 3.1 ± 1.1 \succ
 - PDG 2019 update: 1.259 ± 0.885 \succ
- Cross section not corrected by decay branching ratio * \succ
- Integral from 3 GeV/c: 1)
- 2) Fit ratio from 2 GeV/c:
- 3) Fit ratio from 3 GeV/c:
- (Default) shown in slide 11: 4)
- $R(e/h) = 1.319 \pm 0.225$

BR(hadronic, PDG) = $(1.43\pm0.32)\%$ BR(electronic, PDG) = $(1.8\pm1.2)\%$

Is it possible to use two measurements to constrain the decay branching ratio?

 $R(e/h) = 1.234 \pm 0.158 \ R(e/h) = 1.398 \pm 0.182$ $R(e/h) = 1.280 \pm 0.092^{+0.161}_{-0.131}$

