Development of Water Cherenkov Detector for the J-PARC H-Dibaryon Search Experiment

Sungwook Choi Dept. Of Physics, Korea University

Hadron & Nuclear Physics Lab

1

2nd CeNum Workshop

J-PARC E42 Experiment

PID Strategy of WC

Protons and kaons will be discriminated by the difference in their photon yield

$$\frac{d^2N}{dxd\lambda} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

Threshold : 15 Npe Proton Rejection Ratio : 46 % Kaon Survival Ratio : 99.9 %

a.u 0.1 $N_{\rm P} = 15$ 0.08 $N_{\rm K} = 31$ 0.06 Npe Distribution by Proton 0.04 0.02 Npe Distribution by Kaon 20 30 50 70 10 40 60 100 a.u 0.08 0.07 $N_{\rm P} = 26$ $N_{\rm K} = 52$ 0.06 0.05 Npe Distribution by Proton **Threshold : 29 Npe** 0.04 0.03 Npe Distribution by Kaon **Proton Rejection Ratio : 73 %** 0.02 0.01 Kaon Survival Ratio : 99.9 % 0 70 10 20 30 40 50 60 90 Number of Photoelectrons

Prototype Water Cherenkov Detector

Prototype WC Cosmic Ray Test

Schematic Design

Outer Vessel : $257^{W} \times 207^{H} \times 1880^{T}$ [mm]

Inner Vessel : $214^{W} \times 164^{H} \times 1810^{T}$ [mm]

- Two layer system for the detector maintenance
 - Reflector sheet is attached to inner wall of the inner vessel

```
• PMT Holder also designed
```

WC Beam test with e⁺ beam

PMT Gain Measurement

$$S_{real}(x) = const. \times \begin{bmatrix} \left\{ \frac{1-w}{\sigma_0 \sqrt{2\pi}} exp\left(-\frac{(x-Q_0)^2}{2\sigma_0^2}\right) + w\theta(x-Q_0) \times \alpha exp\left[-\alpha(x-Q_0)\right] \right\} e^{-\mu} \\ + \sum_{n=1}^{\infty} \frac{\mu^n e^{-\mu}}{n} \times \frac{1}{\sigma_1 \sqrt{2\pi n}} exp\left(-\frac{(x-Q_0-nQ_1)^2}{2n\sigma_1^2}\right) \end{bmatrix} \end{bmatrix}$$

Analysis

Npe values were scanned along each axis and by differing incident angle by 15°

 Linearity between online and offline sum and correlation with Peak ADC were also scanned.

Position Dependency

g

g

9

Incident Angle Dependency

WC Mass Production

- WC is now on mass production for the installation at J-PARC beam line
- WC K+ beam test J-PARC, Nov.2020

E42 Geant4 Simulation

 Proton rejection efficiency estimation with E42 Geant4 Simulation, using E07 (K⁻,K⁺) data

Npe Distribution p/K+

Hadron & Nuclear Physics Lab

14

2nd CeNum Workshop

Proton Rejection Efficiency

$$K^-p \rightarrow K^*(892)p \rightarrow K^-p\pi^0$$

Total Cross Section : 0.849 mb

$$K^-p \rightarrow K^*(892)p \rightarrow K^0_S p\pi^-$$

Total Cross Section : 1.402 mb

Dalitz Plot

Yield Estimation

 $Y = F_{K^-} \times n_{target} \times d\sigma$

E42 Beam Flux : 120k /s

K*(892) induced Total Cross Section : 2.252 mb

Estimated K*(892) Yield

• Diamond Target : ~ 8.2M / day $K^-p \rightarrow K^*(892)p \rightarrow K^-p\pi^0$: ~ 3M / day $K^-p \rightarrow K^*(892)p \rightarrow K^0_S p\pi^-$: ~ 5M / day

- ~100k/day K*(892) can be detected via $K^-p \rightarrow K^-p\pi^0$
- ~170k/day K*(892) can be detected via $K^-p \rightarrow K_S^0 p \pi^-$

Summary

- Water Cherenkov detector is developed for J-PARC E42 in order to separate protons and kaons in online trigger.
- WC was tested by irradiating 460 MeV e+ beam at ELPH and confirmed good performance of WC and the mixer logic
- ~ 6.8k/day K*(892) events can be obtained at current beam intensity according to preliminary yield estimation results
- WC is in mass-production and 1.8 GeV/c K- beam test is scheduled in Nov. 2020 at J-PARC

Back Up

Prototype WC Cosmic Ray Test

• Npe of each channel were monitored during 35 days, corresponds to the requested beam time of E42

ELPH Beam Test Electronics

PMT Gain Measurement

- Gain of PMT was scanned by LED light source to figure out its stability, by differing the LED driving frequency from 1kHz to 1MHz
- Each gain was set as **22.3** and **20.6**, respectively

- Main Parameter : Reflectivity of diffusive reflector, set as from 92 % to 98 %
- PMT cathode as a sensitive detector
- Hit and Miss method

Generated random number > QE value : Counts the photon

Hadron & Nuclear Physics Lab