Energy spectrum

Surface barrier detector

- N-type Silicon semi-conducto의 표면을 산화시켜 ptype을 만들고, 다시 그 표면을 Ni 혹은 Au 등의 금속 을 얇게 흡착시켜 전극을 만듦.
- 공핍층에 energy deposit이 생기면 electron-hole pair가 만들어지고, electron과 hole은 전류를 만든다.
- 이 때의 전류의 크기를 측정하여 energy deposit을 계산한다.
- Depletion region이 매우 얇기 때문에 alpha particle, 무거운 하전입자를 검출할 때, 혹은 그 energy spectrum을 측정할 때 사용한다.

실제 Surface Barrier Detector

높이차?

Surface Barrier Detector

Vaccum chambe의 뚜껑에 부착된 Surface Barrier Detector

Vaccum Chamber

Vaccum chamber

Vaccum chamber

Vaccum pump

Source holder

Alpha particle Energy spectrum 측정

- Vaccum chamber 내부를 vaccum 상태로 만들 고 241-Americium source가 Surface Barrier detector를 바라보도록 하고 Energy spectrum 을 측정하였다.
- 측정 결과 오른쪽과 같이 Gaussian과 유사한 형태의 그래프가 나타났다.
- 이러한 형태로 나타난 이유는 진공 chamber 안의 기압이 약 680 mmHg이고 가지고 간 선 원이 밀봉선원이여서 얇은 막을 통과하며 energy deposit이 있었기 때문이었다.

첫 번째 실험 결과 spectrum

Alpha particle Energy spectrum 측정

KRISS의 241-Americium source(비밀봉선원)를 이용한 Energy spectrum 측정 결과

241 Americium decay scheme

.) - ACTINON Model 927 SN 7290503 Input 1 ((del 1+1+half)	
er: 481 = 5,425.34 keV 0.0	Cnts	
	3 8	

5.578 MeV (84.45%)

 α Transitions 2.1

	Energy	Probability	F		keV	× 100
	keV	$\times 100$		$\alpha_{0,19}$	5219,6(2)	
				$\alpha_{0,18}$	5242,25 (13)	0,0007
$\alpha_{0,36}$	4838,00(13)	0,00004(3)	47	$\alpha_{0,17}$	5266, 89(13)	0,0003
$\alpha_{0.34}$	4882,14(13)	0,000086	44	$\alpha_{0,16}$	5269,21 (13)	0,0009
$\alpha_{0.33}$	4915,86 (13)	0,0007	9,5	$\alpha_{0,15}$	5277,90(23)	0,0006
Q0 32	4971.62 (15)	,	, í	$\alpha_{0,14}$	$5305,\!44\ (13)$	
0,32 00,30	5039.83(15)			$\alpha_{0,13}$	5313,40(13)	0,0013
Cia 20	5045,00(10)			$\alpha_{0,12}$	5321,0 (3)	
$\alpha_{0,29}$	5045, 49(14)			$\alpha_{0,11}$	5332,77(13)	0,0022 (3)
$\alpha_{0,28}$	5047,73(13)	0.0001	1000	$\alpha_{0,9}$	$5370,\!25(13)$	0,0005
$\alpha_{0,27}$	5091,70(14)	0,0001	1000	$\alpha_{0,8}$	5411,82(13)	0,014(3)
$lpha_{0,25}$	5140,81 (13)			$\alpha_{0,6}$	5479,32(13)	1,66(3)
$\alpha_{0,24}$	$5151,\!60\ (15)$	0,00011	2300	$\alpha_{0,5}$	5507,83(13)	$\sim 0{,}01$
$\alpha_{0,23}$	5178, 13(13)	$\sim 0,0004$	~ 1000	$\alpha_{0,4}$	5534,86(12)	13,23(10)
$\alpha_{0.22}$	5185,27(13)	$\sim 0,0004$	~ 1000	$\alpha_{0,3}$	5561,92(12)	< 0.04
$\alpha_{0,21}$	5193.04(16)			$\alpha_{0,2}$	5578,28(12)	84,45(10)
$\alpha_{0,20}$	5203.70(13)	0.0004	1400	$\alpha_{0,1}$	$5604,\!62(12)$	0,23(1)
0,20	,- ()	-,		$\alpha_{0,0}$	$5637,\!82(12)$	0,38(1)
				1		

241-Am Decay Scheme(reference : LNHB)

Energy

Probability

 \mathbf{F}

1400

4600

1600

2700

2100

1600

12000

770

16,4

 ≈ 4000

 4,3

> 2000

1,3

600

610

5.604 MeV + 5.637 MeV (0.23 + 0.38 %) 5.479 MeV(1.66%)

5.534 MeV(13.23%)

8

Energy deposit problem

Energy deposit on scintillator

10

Trigger 조건이 변함에도 Mean 값은 거의 변하지 않음.

Trigger 조건이 증가함에 따라 Energy deposit이 감소함 이는 Trigger 쪽에 에너지를 더 많이 남기기 위해서는 Scintillator에 에너지를 덜 남겨야 하기 때문이다.

