The number of photons that arrive at MPPC depending on emission point

Emission point : center

Emission point : edge

Emission point : edge

Make 9000 photons for one event, and count the number of photons in MPPC. Therefore Landau distribution is not appeared.

And as a result, the number of photons arrived MPPC is independent of the position where photon is emitted.

However the number of photons arrived MPPC is smaller than our calculation.

Interspace dependency

Interspace dependency

The wider width of air gap, the smaller the number of photons arrive

Existance of Optical cement

Motivation

• Can we expect the number of photons arrive MPPC when optical cement exist?

- By calculating it only cosindering refractive index, the probability is about 0.7465.
- Therefore, probability is smaller than 0.7465, because escaping through MPPC box is not considered.

Scintillator -> Optical cement -> Epoxy Window

Calculation value = 74.65%Ratio that arrive = 63% Scintillator -> Optical cement -> Silicon Window

Calculation value = 49.73% Ratio that arrive = 48.96%

Using Alpha particle

Motivation

- To specify energy spectrum of source, we can use alpha particle.
- However, permeability of alpha particle is too small to wrap scintillator with aluminum mylar.

Scintillation Process

Purpose of Simulation

- According to Bethe-Bloch formula, the average deposit energy on scintillator should be 1 MeV.
- However, in simulation, energy deposit on scintillator is about 0.92 MeV.
- Therefore, we want to compensate for this.

/* G4Material* scintillator = new G4Material("scintillator", 1.023*g / cm3, 2); scintillator -> AddElement(C, 91.6*perCent); scintillator -> AddElement(H, 8.4*perCent);*/

G4Material* scintillator = nist->FindOrBuildMaterial("G4_PLASTIC_SC_VINYLTOLUENE", false); // false = lsotopes are not explicitly built // true = elemnt is built of isofotpes with natural abundance

Material defined by Eljen company

Material defined in NIST

Difference between energy deposit is 0.0025. And this is smaller than standard error(= 0.9257 / 100).

Anthracene

- Anthracene is a solid polycyclic aromatic hydrocarbon of formula C₁₄H₁₀ consisting of three fused benzene rings.
- Anthracene exhibits a bule fluorescence under ultraviolet radiation.

// Anthracene

G4Material* scintillator = new G4Material("scintillator", 1.25 * g / cm3, 2); scintillator -> AddElement(C, 14); scintillator -> AddElement(H, 10);