
$\pi N \to \pi N$ elastic scattering at finite density

Hyeon-dong Han

Pukyong National University (PKNU)

목 차

- I. Introduction
- II. Amplitude calculation
- ■. Cross-section calculation

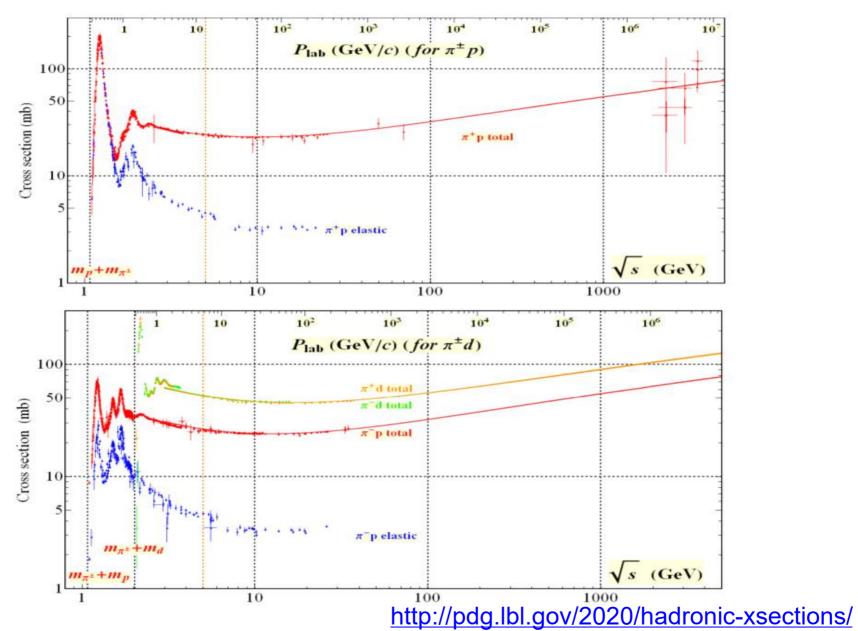
RIVISTA

DEL

NUOVO CIMENTO

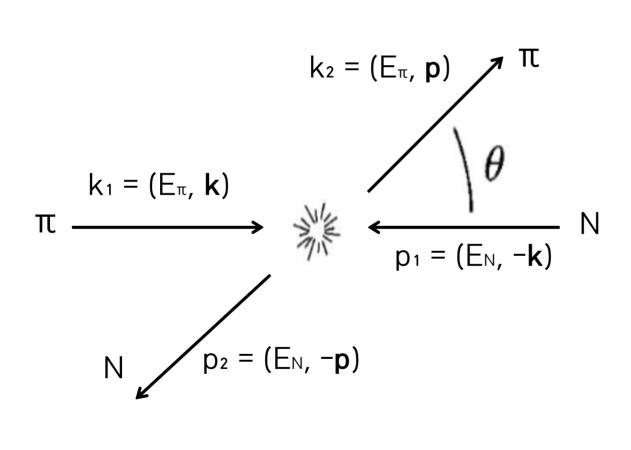
A CURA DELLA SOCIETÀ ITALIANA DI FISICA

Vol. II Luglio - Settembre 1970 N.


Pion-Nucleon Elastic Scattering.

G. GIACOMELLI

Istituto di Fisica dell'Università - Bologna Istituto Nazionale di Fisica Nucleare - Sezione di Bologna CERN - Geneva

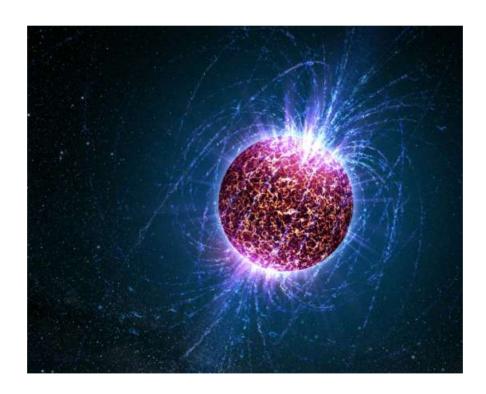

(ricevuto il 30 Giugno 1970)

1. Introduction.	299	2'12. S and T matrices.	331
2. General considerations.	304	2'13. High-energy theorems.	332
2'1. Notations and general for-	OUX	2'13.1. First Pomeranchuk theo-	992
mulae.	904	i	999
	304	rem.	332
2.2. Scattering amplitudes and		2'13.2. Second Pomeranchuk theo-	
cross-sections.	3 07	rem.	333
2'3. Unitarity, crossing and ana-		2'13.3. Upper bounds on the high-	
lyticity.	312	energy scattering amplitude.	333
2'3.1. Unitarity.	312	2'13.4. Lower bounds on the high-	
2'3.2. Crossing.	313	energy scattering amplitude.	333
2'3.3. Analyticity.	313	2'14. Implications of unitary sym-	
2'3.4. Singularities of the scat-		metries for total cross-sections.	334
tering amplitude.	313	2'14.1.	334
2'4. Potential scattering, Born ap-		2'14.2. The quark model.	335
proximation.	314	3. Total cross-sections.	335
2.5. Partial-wave expansion.	315	3'1. Experimental method.	336
2'6. Optical theorem.	317	3 2. Analysis of total cross-section	000
2'7. Impact parameter expansion	01.	data.	338
of the scattering amplitude.	318	4. Elastic cross-sections.	342
2.8. Isospin analysis of the pion-	310	4'1. Some experimental examples.	343
• • •	320	4'2. Total elastic cross-sections.	
nucleon system.			347
2'9. Exchange amplitudes.	322	4'3. Angular distributions, low en-	
2'10. Resonances.	323	ergies.	35 0
2'11. Coulomb and nuclear scat-		4'4. Angular distributions, high	
tering.	330	energies.	356

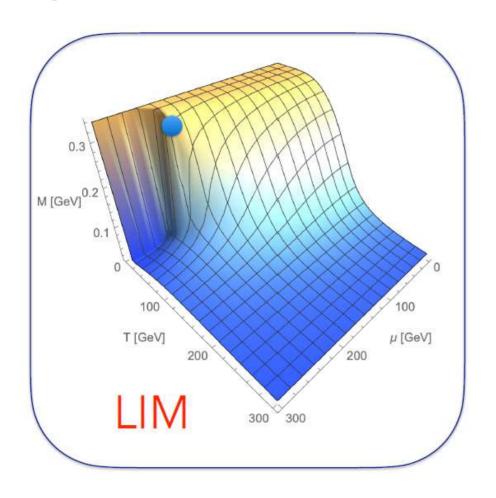
2nd CENuM Joint Workshop, 3-4 July 2020

$\circ \pi N \rightarrow \pi N$ elastic scattering in center-of-mass frame

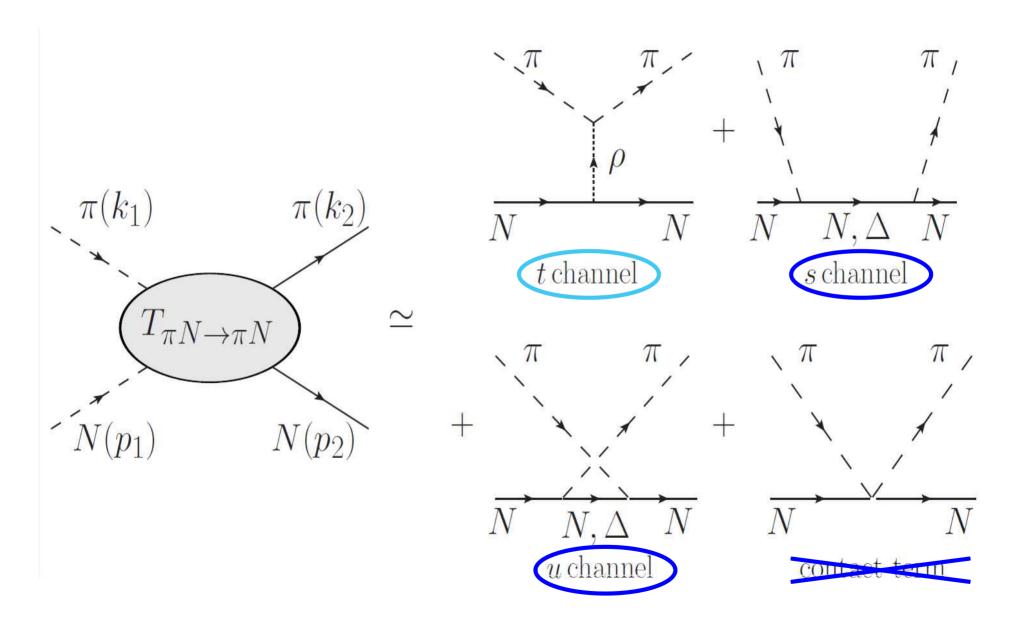
$$x \rightarrow z$$

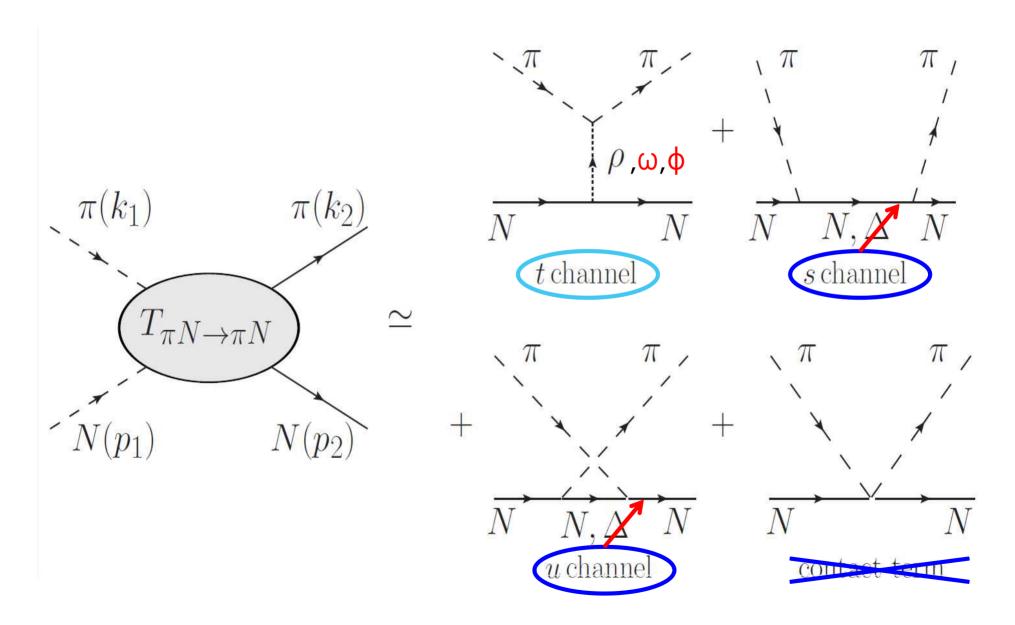

$$\mathbf{k} = (0, 0, \mathbf{k})$$

$$\mathbf{p} = (psin\theta, 0, pcos\theta)$$


$$E_N = \sqrt{M_N^2 + |\vec{k}|^2}$$

$$E_\pi = \sqrt{M_\pi^2 + |\vec{k}|^2}$$


$$M_{\pi}, M_N \to M_{\pi}(\mu), M_N(\mu)$$



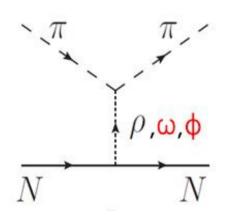
Modified instanton model

$$M_{quark}(\mu)$$
 \downarrow
 $M_{\pi}(\mu), M_{N}(\mu)$

S-channel

$$p \xrightarrow{\lambda} N \xrightarrow{N} p'$$

$$\mathcal{L}_{\pi NN} = \frac{g_{\pi NN}}{2f_{\pi}} \bar{N} \gamma^5 \partial \pi N$$


$$\mathcal{M}_{s} = -\frac{g_{\pi NN}^{2}}{4f_{\pi}^{2}} \bar{u}(p') \gamma_{5} k' \frac{p+k+m_{N}}{(p+k)^{2}-m_{N}^{2}} \gamma_{5} k u(p)$$

U-channel

$$p \xrightarrow{k} N \xrightarrow{N} p'$$

$$\mathcal{M}_{u} = -\frac{g_{\pi NN}^{2}}{4f_{\pi}^{2}} \bar{u}(p') \gamma_{5} k \frac{p-k'+m_{N}}{(p-k')^{2}-m_{N}^{2}} \gamma_{5} k' u(p)$$

T-channel

$$\mathcal{L}_{\rho\pi\pi} = -ig_{\rho\pi\pi}\rho_{\mu}(\boldsymbol{\pi}\cdot\partial^{\mu}\boldsymbol{\pi} - \partial^{\mu}\boldsymbol{\pi}\cdot\boldsymbol{\pi})$$

$$\mathcal{L}_{\rho NN} = -ig_{\rho NN} \bar{N} [\rho^{\mu} \gamma_{\mu} - \frac{\kappa_{\rho NN}}{2M_N} \partial^{\nu} \rho^{\mu} \sigma_{\mu\nu}] N + H.c.$$

$$\mathcal{M}_
ho, \mathcal{M}_\omega, \mathcal{M}_\phi$$

Form factor

- s, u channel

$$F_x(q^2) = \frac{\Lambda^4}{\Lambda^4 + (x - M_x^2)^2}, \ x = s, u$$

 $(\Lambda = \text{cut-off mass}, M_x = \text{exchange particle mass})$

- t channel

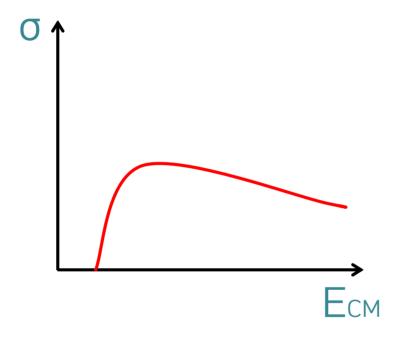
$$F_V(q^2) = \frac{\Lambda^4}{\Lambda^4 + (t - M_V^2)^2}, \ V = \rho, \omega, \phi$$

3. Cross-section calculation

Differential Cross-Section (DCS)

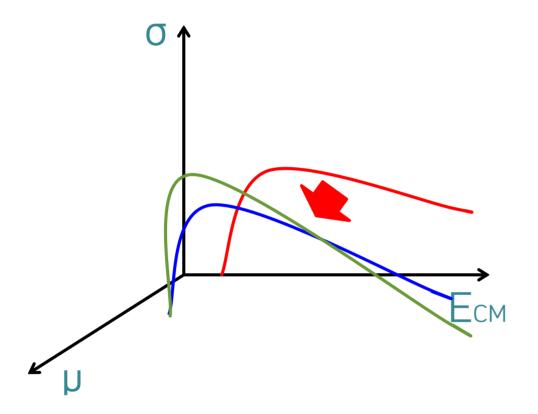
$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{CM} = \frac{1}{2E_A 2E_B |v_A - v_B|} \frac{|p_1|}{(2\pi)^2 4E_{CM}} |\mathcal{M}(p_A, p_B \to p_1, p_2)|^2$$

$$\Rightarrow \frac{1}{64\pi^2} \frac{p}{k} \frac{1}{E_{CM}^2} \frac{1}{2} \sum_{spins} |\mathcal{M}|^2$$


$$(|\mathcal{M}(p_A, p_B \to p_1, p_2)|^2 = \frac{1}{2} \sum_{spins} |\mathcal{M}_s F_s + \mathcal{M}_u F_u + \mathcal{M}_t F_t|^2)$$

Total Cross-Section (TCS)

$$\sigma^{total} = 2\pi \int_0^{\pi} \left(\frac{\partial \sigma}{\partial \Omega}\right)_{CM} \sin\theta \, d\theta$$


3. Cross-section calculation

 $\circ \pi N \rightarrow \pi N$ elastic scattering at finite density

3. Cross-section calculation

 $\circ \pi N \rightarrow \pi N$ elastic scattering at finite density

Thank you for listening!