HANUL Meeting 191001

YoungJun Kim

Event Selection of $\Lambda_c^+ \to p K^- \pi^+$

•

ABLE IV: Event s	election criteri	a for $\Lambda_c^+ \to p K^- \pi^+$ chann
Selection Type	Quantity	Selected Condition
	Λ_c Select	ion
Scaled momentum	m	
	x_p	> 0.54
χ^2 of vertex fitt	ing	
	χ^2	< 40
Ch	arged Particle	e Selection
Impact Paramet	er	
	dr	< 0.10 cm
	dz	< 2.00 cm
PID(K)		
	$\mathcal{R}(K \pi)$	> 0.90
	$\mathcal{R}(p K)$	< 0.60
PID(p)		
	$\mathcal{R}(p K)$	> 0.90
	$\mathcal{R}(p \pi)$	> 0.90
$PID(\pi)$		
	$\mathcal{R}(K \pi)$	< 0.60
	$\mathcal{R}(p \pi)$	< 0.60
Lepton PID		
	$\mathcal{R}(e)$	< 0.90
Number of SVD) hits	
	$r\phi$ -layer	≥ 1
	z-layer	≥ 1

In order to calculate relative branching fraction $\Gamma(\Lambda_c^+ \to p K_s^0 \pi^0) / \Gamma(\Lambda_c^+ \to p K^- \pi^+)$

• Except for x_p cut, same conditions for $\Lambda_c^+ \to pK^-\pi^+$ selection of SB Yang's DSC study are used.

• x_p cut is same as $\Lambda_c^+ \to p K_s^0 \pi^0$

Obtaining Detection Efficiency

- Efficiency tables on the Dalitz plane were obtained by non-resonant signal MC analysis :
 - 5x10 bins in $M^2(pK)$ vs. $M^2(K\pi)$ plane.
 - 10M events of non-resonant decay of Λ⁺_c → $pK^-\pi^+$ → done(?)
 - 10M events of non-resonant decay of Λ⁺_c → $pK^0_s π^0$ → ongoing

 $\Lambda_c^+ \to p K^- \pi^+$

 $\Lambda_c^+ \rightarrow p K^- \pi^+$ Detection efficiency

Non-resonant decay signalMC 10M events

 $\Lambda_c^+ \rightarrow p K^- \pi^+$ Detection efficiency

The number of events in each Dalitz bin

$\Lambda_c^+ \to p K^- \pi^+$ Detection efficiency

Efficiency

7

Signal / Background PDF

 $\Lambda_c^+ \to p K^- \pi^+$

Signal PDF : **f1** * *Gaus*1(m, σ_1) + **f2** * *Gaus*2(m, σ_2) Background PDF : 3rd order Chebychev

Fixing Fit Parameters Signal MC Fit result

Signal PDF : **f1** * *Gaus*1(m, σ_1) + **f2** * *Gaus*2(m, σ_2) Yield ratio f1/f2 and Sigma ratio σ_1/σ_2 are fixed for each bin.

Generic MC Fit Results $\Lambda_c^+ \to p K^- \pi^+$

Extracted Signal Yields

Efficiency Corrected Yield

 $\Lambda_c^+ \to p K^- \pi^+$

Generated signal events (from ccbar): 7,581,551

Efficiency corrected yield : 7,446,278 ± 12134

1.78% difference

Efficiency Corrected Yield

 $\Lambda_c^+ \rightarrow p K^- \pi^+$ PHOTOS Energy loss < 10MeV

Generated signal events (from ccbar): 7,581,551 7,499,353

Efficiency corrected yield : 7,446,278 \pm 12134

0.71% difference

 $\Lambda_c^+ \to p K_s^0 \pi^0$

 $\Lambda_c^+ \rightarrow p K_s^0 \pi^0$ Detection efficiency

Non-resonant decay signalMC 10M events

 $\Lambda_c^+ \to p K_s^0 \pi^0$ Detection efficiency

The number of events in each Dalitz bin

 $\Lambda_c^+ \to p K_s^0 \pi^0$ Detection efficiency

Efficiency

17

Signal / Background PDF

 $\Lambda_c^+ \to p K_s^0 \pi^0$

Signal PDF : f1 * *Gaus*(*m*, σ) + f2 * *BifurGaus*1(*m*, σ_{1L} , σ_{1R}) + f3 * *BifurGaus*2(*m*, σ_{2L} , σ_{2R}) Background PDF : 3rd order Chebychev

Fixing Fit Parameters Signal MC Fit result

Dashed Magenta : Gaus Dashed Cyan : Asym Gaus1 Dashed Green : Asym Gaus2 Solid Red : Signal PDF

Signal PDF : **f1** * $Gaus(m, \sigma)$ + **f2** * $BifurGaus1(m, \sigma_{1L}, \sigma_{1R})$ + **f3** * $BifurGaus2(m, \sigma_{2L}, \sigma_{2R})$

Yield ratio between f1, f2, f3 and Sigma ratio between σ , $\sigma_{1LR'}$, σ_{2LR} are fixed for each bin.

Generic MC Fit Results $\Lambda_c^+ \to p K_s^0 \pi^0$

Solid Blue : Signal Dashed Green : Bkg Solid Red : Total Fit

Extracted Signal Yields

Efficiency Corrected Yield

 $\Lambda_c^+ \to p K_s^0 \pi^0$

Generated signal events (from ccbar): 1,715,929 Efficiency corrected yield : 1,628,752 ± 16667 5.08% difference

Efficiency Corrected Yield

 $\Lambda_c^+ → pK_s^0 \pi^0$ PHOTOS Energy loss < 10MeV Generated signal events (from ccbar): 1,715,929 1,713,618 Efficiency corrected yield : 1,628,752 ± 16667

4.95% difference

Branching Fraction

 $\Gamma(\Lambda_c^+ \to p K_s^0 \pi^0) / \Gamma(\Lambda_c^+ \to p K^- \pi^+)$

```
GenHep table : 1,713,618 / 7,499,353 = 22.85%
```

Efficiency corrected yield : 1,628,752 ± 16667 / 7,446,278 ± 12134 = **21.87 ± 0.23 %**

4.29% difference

back up