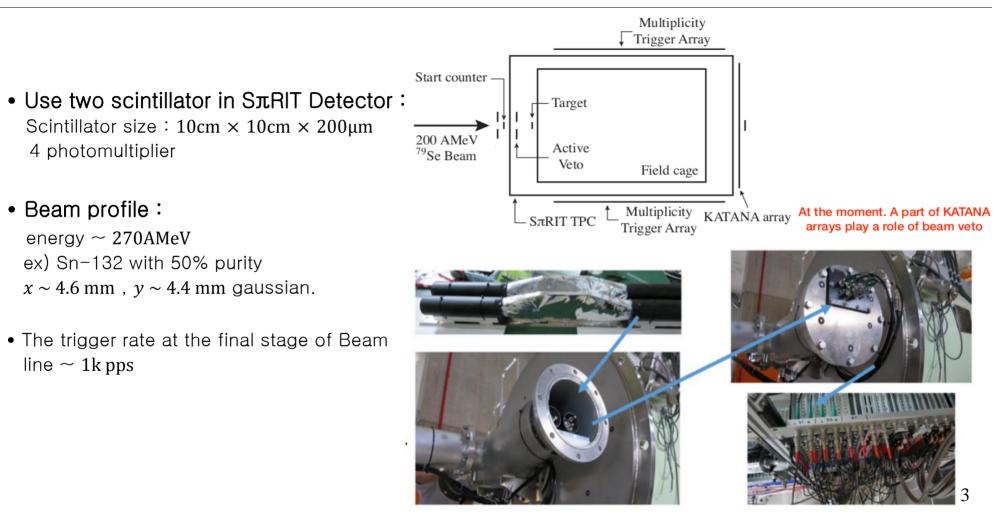


LAMPS START COUNTER R&D STATUS

Hyungjun Lee Minjung Kweon

INHA University

July 5 2019


1

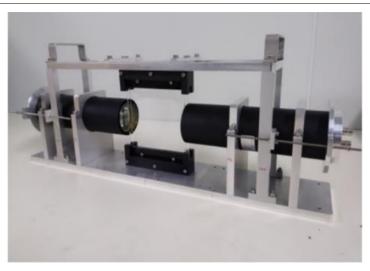
• R&D of the start counter for LAMPS is working on..

- SπRIT Detector
- KoBRA Start Detector
- Check the dependence of thickness with an energy deposition and an efficiency using Geant4

• Test the time resolution of PMTs

- data analysis is on going ..

KOBRA Start Detector


 KoBRA Requirement for plastic detector: Time resolution ~ 50ps(RMS) or ~ 100ps(FWHM) Scintillator size : 10cm × 10cm × 100μm

• Result of test

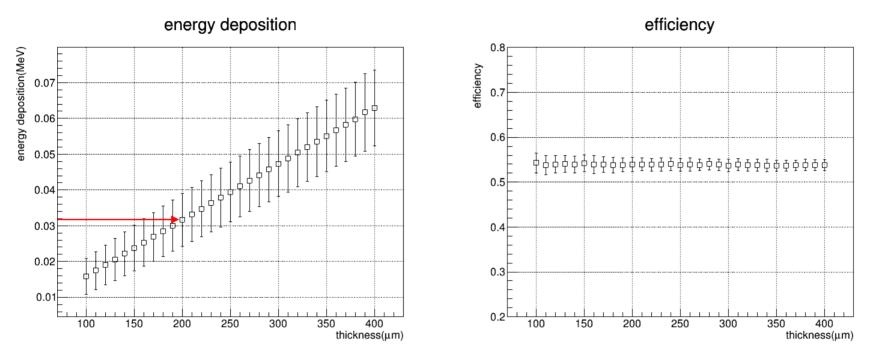
Performance test with Am-241 Time resolution $\sim 44 ps$ without light guide.

• Equipment

Plastic scintillator : EJ-230 PMT : H2431-50

KoBRA Start Detector Plastic

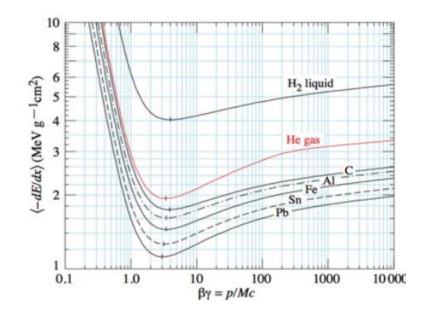
Scintillator	EJ-228	EJ-230	EJ-232	EJ-232Q
Light output (% Anthracene)	67	64	55	19
Rise time (ns)	0.5	0.5	0.35	0.11
Decay time (ns)	1.4	1.5	1.6	0.7
Pulse width, FWMH (ns)	1.2	1.3	1.3	0.36
Bulk light attenuation length (cm)	100	110 (120)	8	8
Scintillation efficiency (photons/1 MeV e)	10200	9700 8400		2900
Price (10cm x 10cm x 100μm)	\ 875,000	\ 865,000	\ 890,000	-


- EJ-232Q has a lowest Light output
- EJ-232 and EJ-232Q have a fast rise time however the bulk light attenuation length is very short. These are irrelevant on 10cm x 1 0cm size scintillator.
- EJ-232 and EJ-232Q has a lower efficiency than EJ-228 and EJ-230.
- EJ-228 should be used in small sizes for the best timing results to minimize photon scattering effects. This scintillator is particularly useful where very high count rates are present.
- EJ-230 is a variant on the optimized EJ-228. The Scintillators up to 50 cm can be employed with good timing and light collection results.

- Simulate a beam response on scintillator using Geant4 to understand the experimental data.
- Beam profile : C-12 beam, total energy 2000MeV(~<u>167AMeV</u>)
- Scintillator : EJ-230 ,10cm × 10cm
- We have simulated the scintillator without light guide, but we plan to add light guide later.
- We are studying whether the timing resolution of a Scintillator can be obtained using Geant4.

Geant4 simulation

Geant4 simulation


- The Beam is C-12 having 167AMeV
- The energy deposition is increased with thickness as expected.
- The efficiency is not depended on thickness.
- efficiency \equiv the # of photons reached pmt / the # of created photons in the scintillator.
- When the thickness is $200 \mu m,$ the energy deposition $\sim 0.032 \; MeV$
- We are studying the thickness dependence of a time resolution.

Energy loss calculation

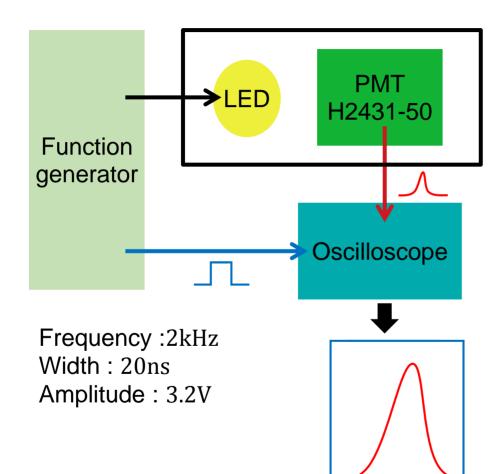
• Consider C-12 beam with kinetic energy 167 AMeV going through polyvinyltoluene (EJ230 ~ 1.023g/cm^3). Compute the beam energy loss for the given width.

KE = E - M : 167AMeV = E - 78AMeV $\therefore E = 245AMeV \rightarrow p \sim 232AMeV/c$ $\therefore \beta \gamma = p/M \sim 1.39$ $dE/dx(\beta \gamma \sim 1.39) \sim 1.9MeV \cdot cm^2/g$ $\Delta E/\Delta x = 1.023g/cm^3 \times 1.9MeV \cdot cm^2/g \sim 1.9MeV/cm$

- For $200 \mu m$ thickness, 0.038 MeV beam energy loss.
- It is similar with simulation data.

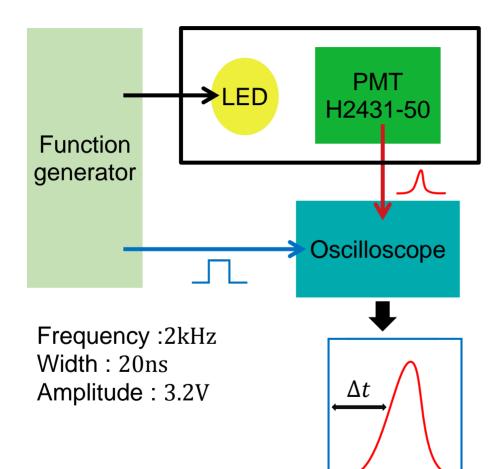
Fragment	Decay Type	Primary beam (400 kW)		Production	RI beam eneryg	RI beam Intensity	RI Beam purity
		Туре	에너지 (MeV/u)	Reaction	(MeV/u)	(pps)	(%)
132Sn	Beta- decay	238U	200	in-flight fission	133.2	8.21E+06	1.4661
130Sn	Beta- decay	238U	200	in-flight fission	133.1	3.74E+08	13.6
124Sn	stable	124Sn	230	transmission	230	8.77E+13	100
112Sn	stable	112Sn	263	transmission	263	8.49E+13	100
106Sn	Beta+ decay	124Xe	252	fragmentation	155.9	5.31E+08	18.5
100Sn	Beta+ decay	112Sn	263	fragmentation	161.1	1.41E+01	0.0128
96Zr	stable	96Zr*	248	transmission	248	1.05E+14	100
82Cu	Beta- decay	96Zr	248	fragmentation	166.8	2.72E-03	1.2557
81Cu	Beta- decay	238U	200	in-flight fission	140	5.91E+00	0.000012
80Cu	Beta- decay	238U	200	in-flight fission	139.9	6.17E+01	0.0002
79Ni	Beta- decay	96Zr	248	fragmentation	167.1	2.64E-03	1.3223
78Ni	Beta- decay	238U	200	in-flight fission	140.3	8.99E+00	0.000045
72Ni	Beta- decay	82Se	256	fragmentation	167.5	5.63E+06	77.8
70Ni	Beta- decay	76Ge	260	fragmentation	169.4	2.57E+08	15.7
68Ni	Beta- decay	76Ge	260	fragmentation	168.4	2.65E+09	18.6
77 Co	Unknown	86Kr	258	fragmentation	172.2	1.87E-02	97.59

• In the same ways for Sn-124(230AMeV)


+ For $200 \mu m$ thickness, The beam energy loss $\sim 0.12 MeV$

• For several hundred μm thickness design, The beam energy loss is negligible.

Dr.kim provide this beam list.


- There are 12 photomultipliers in Korea university which are same model to be used in KoBRA (H2431-50)
- The purpose is finding a time resolution of these PMTs and select the PMTs having good performance.
- The signal data was taken and an analysis is on going.

• We finished the simulation using Geant4 and checked the dependence of thickness with respect to the energy deposition and the efficiency.

- We finished the PMTs test and will analyze about given data for finding time resolution of PMTs.
- We will set the light guide on our simulation.
- We will study how to find the time resolution of scintillator in Geant4.
- We will confirm suitable scintillator materials and buy the scintillator in July