

Nuclear Astrophysics Measurements with Radioactive Beams

Michael Smith Physics Division Oak Ridge National Laboratory Oak Ridge, Tennessee, USA October 31, 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

 radioactive beam facilities enable nuclear scientists to study some of the most fascinating phenomena in nature

Nuclear Astrophysics with Radioactive Beams

Nuclear Astrophysics with Radioactive Beams

• use this information to determine predictive models of subatomic nuclei

• improve our understanding of nuclear reactions

Nuclear Astrophysics with Radioactive Beams

discover a new pathway to synthesize superheavy nuclei

• produce new isotopes for imaging and treating cancer

Nuclear Astrophysics with Radioactive Beams

• help improve international nuclear security

• provide an **empirical foundation** for understanding **exploding stars**

Nuclear Astrophysics with Radioactive Beams

 in exploding stars, extreme temperatures & densities cause unstable nuclei to be formed and have subsequent reactions before decay

Nuclear Astrophysics with Radioactive Beams

• sequences of reactions on unstable isotopes occur in explosions

• these reaction sequences play a critical role in element creation

Nuclear Astrophysics with Radioactive Beams

 radioactive beam facilities enable measurements that form an empirical foundation for our understanding of stellar explosions

Core collapse supernova animation

• understand the energy generation and element creation in stellar explosions

- understand the energy generation and element creation in stellar explosions
- help decipher explosion observables

- understand the energy generation and element creation in stellar explosions
- help decipher explosion observables
- address important unanswered puzzles about exotic cosmic events

- understand the energy generation and element creation in stellar explosions
- help decipher explosion observables
- address important unanswered puzzles about exotic cosmic events
- probe the chemical evolution of the galaxy

 closely couple radioactive beam measurements with the development of advanced detectors & techniques needed to make these measurements

Outline

- Astrophysical Sites & Open Questions
- Experimental Approaches
- Challenges
- Recent Highlights
- Future Plans

• thermonuclear outburst on the surface of an accreting white dwarf star

CAK RIDGE

- Possible new class of high-temperature novae
- Isotopic ratios that are "thermometers"
- heaviest masses synthesized?

• thermonuclear outburst on the surface of an accreting neutron star

Nuclear Astrophysics with Radioactive Beams

Core Collapse Supernovae

• collapse of a massive star forming a neutron star or black hole

Core Collapse Supernovae – Open Questions

 what fraction of the elements heavier than iron are synthesized in supernovae?

Nuclear Astrophysics with Radioactive Beams

Core Collapse Supernovae – Open Questions

- production of radionuclides 44 Ti, 26 Al, others influenced by (p, γ) rates
- location of "mass cut" can be constrained with help of better rates

Neutron Star Mergers

• merger of 2 neutron stars forming a kilonova

Neutron Star Mergers – Open Questions

- can we understand the nucleosynthesis in the kilonova?
- can we predict robust observational signatures of NSMs?
- what percentage of r-process material is formed in mergers? rophysics with Radioactive Beams

Other Exotic Systems

• these exotic systems feature unusual thermonuclear burning

Nuclear Astrophysics with Radioactive Beams

Experimental Approaches

Annu. Rev. Nucl. Part. Sci. 2001. 51:91-130

Nuclear Astrophysics Measurements with Radioactive Beams *

Michael S. Smith¹ and K. Ernst Rehm²

CONTENTS

1. INTRODUCTION	
2. MOTIVATION AND BACKGROUND	
2.1. Nuclear Physics Information for Astrophysical Modeling	5.
2.2. Unstable Nuclei in Astrophysical Environments	
2.3. The Need for Radioactive Beams	
3. RADIOACTIVE BEAM PRODUCTION TECHNIQUES	
3.1. Isotope Separator On-Line (ISOL) Production	
3.2. Projectile Fragmentation Production	
3.3. In-Flight Production	
3.4. Batch Mode Production	
4. DIRECT EXPERIMENTAL APPROACHES	
AND ASSOCIATED EQUIPMENT	
4.1. General Description and Required Intensities	
4.2. Targets	
4.3. Radiative Capture Reactions	
4.4. Transfer Reactions	

5. INDIRECT EXPERIMENTAL APPROACHES AND ASSOCIATED
EQUIPMENT
5.1. General Description
5.2. Scattering Reactions
5.3. Transfer Reactions
5.4. Time-Inverse Reactions
5.5. Mass and Lifetime Measurements
6. EXPERIMENTAL RESULTS AND ASTROPHYSICAL
IMPLICATIONS
6.1. The ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ Reaction
6.2. The ⁸ Li(α ,n) ¹¹ B Reaction
6.3. The ¹¹ C(p,γ) ¹² N Reaction
6.4. The ¹³ N(p,γ) ¹⁴ O Reaction
6.5. The ¹⁴ O(α ,p) ¹⁷ F Reaction
6.6. The ¹⁵ O(α, γ) ¹⁹ Ne Reaction
6.7. The ${}^{17}F(p,\gamma){}^{18}Ne$ Reaction
6.8. The ¹⁸ F(p, α) ¹⁵ O and ¹⁸ F(p, γ) ¹⁹ Ne Reactions
6.9. The ¹⁸ Ne(α ,p) ²¹ Na Reaction
6.10. The ¹⁹ Ne(p,γ) ²⁰ Na Reaction
6.11. The ⁴⁴ Ti(α ,p) ⁴⁷ V Reaction
6.12. The ⁵⁶ Ni(\mathbf{p}, γ) ⁵⁷ Cu Reaction
6.13. Mass and Lifetime Measurements
for Explosive Nucleosynthesis
6.14. Crucial Measurements for the Future
7. FUTURE RADIOACTIVE BEAM FACILITIES
7.1. Future ISOL Facilities
7.2. Future Fragmentation Facilities
7.3. The Rare Isotope Accelerator
7.4. Other Planned Radioactive Beam Facilities
8 OUTLOOK ^H

Experimental Approaches – Inverse Kinematics

- cannot make a target out of the heavy radioactive nuclei
- measurements therefore utilize an **inverse kinematics** approach ^{challenging} radioactive **heavy beam bombarding a liaht target** •

Experimental Approaches

- direct studies measure reaction in lab that occurs in star
- indirect studies measure different reaction for relevant structure / reaction information

Experimental Approaches

	Direct Studies	Indirect Studies
beam	one choice	multiple choices
equipment	few choices / expensive	wide variety of types/cost
yields	very low (~ event/day)	~10 ⁵ times higher
results	low ambiguity	higher ambiguity
data analysis	relatively straightforward	can be very complex

Direct Measurements – capture reactions

- recoil separator is positioned along the beam axis
- its purpose is to separate all unreacted beam particles from fusion reaction products that are 10¹⁰ – 10¹⁷ times less intense
- usually employs a combination of components that deflect charged particles (dipole magnet, velocity filter, electrostatic deflectors ...)

Direct Measurements – capture reactions

Nuclear Instruments and Methods in Physics Research A306 (1991) 233-239 North-Holland

A recoil separator for use in radioactive ion beam experiments *

M.S. Smith, C. Rolfs 1 and C.A. Barnes

W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena CA 91125, USA

- approach pioneered in 1991
- now popular approach at numerous labs
- SECAR system at FRIB under construction / commissioning
- KOBRA at RAON has promise for these measurements.

CAK RIDGE

Direct Measurements – other reactions

• (p, α) and (α, p) reactions are often measured directly with Si strip detectors

- Trojan horse methods
- inverse reactions for ground state transitions
- Coulomb dissociation (γ, p)
- multinucleon transfer for structure info (mass, lifetimes, decay branches, level densities, beta-delayed particle emission...)

- first measure scattering to locate resonances [beam ~10³ pps]
- follow up with transfer to measure spectroscopic factors [$\sim 10^4 10^5$ pps]
- finish with direct measurements on strongest resonances [$\sim 10^5 10^7$ pps]

Equipment

- recoil separators for capture measurements
- gas targets for capture and $(p, \alpha), (\alpha, p)$
- Si strip arrays for charged-particle detection
- gamma arrays for coincidence measurements

- low beam intensity
- low beam purity/isobaric contaminants
- poor energy resolution & emittance
- limited species
- kinematic compression
- limited beamtime

Challenges – Low Intensity

- careful choice of reaction channel
- design experiments with lower-than-expected beam intensities
 Nuclear Astrophysics with Radioactive Beams

Challenges – Low Intensity

GRETINA

- high efficiency detection schemes
- large acceptance detection schemes
- 4

Challenges – Low Intensity

 maximize signal – to – noise by closely connecting preamps to Si strip detectors

Nuclear Astrophysics with Radioactive Beams

• thick target yields to measure entire excitation functions at once

Nuclear Astrophysics with Radioactive Beams

Challenges – Low Purity

 ranging out techniques use gas volumes to selectively filter out contaminant isotopes based on different energy losses

Challenges – Poor Emittance

distance d

MCP

t₂

 $v = d / (t_2 - t_1)$

MCP

t₁

beam particle tracking

- use detectors with higher pixellation (lower $d\Theta$)
- use thinner targets (lower dE)
- careful choice of beam energies


```
Challenges – Limited Species
```


- use multiple reaction channels
- run as many experiments per beam as possible

Challenges – Limited Beamtime

- assume detector configurations may change between runs
- use rail mounting systems for quick changes without alignments

- reaction important for synthesizing ¹⁸F in novae possible observable
- we used a recoil separator to make the first and only direct measurement of ¹⁷F(p, γ)¹⁸Ne

Direct Measurement of ${}^{17}F(p, \gamma){}^{18}Ne$

measured ¹⁷O + p capture to calibrate system & method

Nuclear Astrophysics with Radioactive Beams

Sum Energy (arb. units)

Direct Measurement of ${}^{17}F(p, \gamma)$ ${}^{18}Ne$

• measured ^{17}O + ^{20}Ne capture to show where Ne recoils should be

Nuclear Astrophysics with Radioactive Beams

Direct Measurement of ${}^{17}F(p, \gamma){}^{18}Ne$

Nuclear Astrophysics with Radioactive Beams

56

•

Direct Measurement of ${}^{17}F(p, \gamma){}^{18}Ne$

• measured ¹⁷F + p capture on resonance !

Direct Measurement of ${}^{17}F(p, \gamma)$ ${}^{18}Ne$

- implications for novae:
 - new fusion rate 2 3 times lower

- in novae, new rate increases synthesis of ¹⁸F by factor of 1.6 in some models, reduces uncertainties from factor of 15 to factor of ~ 2.5
- more ¹⁸F survives explosion -> volume scanned by billion dollar satellites increased by factor of 2
- implications for X-ray bursts: changes synthesis of 17 O by factor of 10, and reduces uncertainties (factor of 100 to factor of ~ 5)

PHYSICAL REVIEW C 99, 041302(R) (2019)

Rapid Communications

Informing direct neutron capture on tin isotopes near the N = 82 shell closure

B. Manning,^{1,2} G. Arbanas,³ J. A. Cizewski,^{1,*} R. L. Kozub,⁴ S. Ahn,^{5,6,7} J. M. Allmond,⁸ D. W. Bardayan,^{8,9} K. Y. Chae,¹⁰
K. A. Chipps,^{8,11} M. E. Howard,¹ K. L. Jones,⁵ J. F. Liang,⁸ M. Matos,¹² C. D. Nesaraja,⁸ F. M. Nunes,⁶ P. D. O'Malley,^{1,9}
S. D. Pain,⁸ W. A. Peters,¹³ S. T. Pittman,^{5,13} A. Ratkiewicz,¹ K. T. Schmitt,⁵ D. Shapira,⁸ M. S. Smith,⁸ and L. Titus⁶
¹Department of Physics and Astronomy, Rutgers University, New Brinswick, New Jersey 08903, USA
²Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
³Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6171, USA
⁴Department of Physics, Tennessee Technological University, Cookeville, Tennessee 37996, USA
⁶Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
⁷JINA-CEE, Michigan State University, East Lansing, Michigan 48824, USA
⁹Department of Physics, University of Notre Dame, South Bend, Indiana 46556, USA
⁹Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
¹³Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA

- 630 MeV ¹²⁸Sn beam (5 MeV/u) with > 99% purity
- Typical beam current $1 3 \cdot 10^5$ pps ... 5 days data collection
- 139 ± 17 μ g/cm2 and 242 ± 39 μ g/cm2 CD₂ targets

Nuclear Astrophysics with Radioactive Beams

B. Manning et al.

- measured (d,p) energy-angle kinematic relationship
- gating on heavy light particle time coincidence greatly reduces background

Nuclear Astrophysics with Radioactive Beams

Nuclear Astrophysics with Radioactive Beams

CAK RIDGE

B. Manning et al.

- highly-segmented detector arrays facilitate angular distribution measurements
- fit with FR-ADWA theory using CH89 and KD potentials and angular momentum transfers of 3 (red) or 1 (blue)
 Nuclear Astrophysics with Radioactive Beams

Spectroscopic Factors						
^{A}X	E_x (keV)	nlj	DWBA	FR-ADWA-KD	FR-ADWA-CH	B. Manning et al.
125 Sn	2769	$2f_{7/2}$	0.40 ± 0.03	0.36 ± 0.03	$0.39~\pm~0.03$	
	3385	$3p_{3/2}$	0.37 ± 0.04	0.24 ± 0.02	$0.29~\pm~0.03$	low
	3998	$3p_{1/2}$	0.55 ± 0.07	0.34 ± 0.04	$0.42~\pm~0.05$	
127 Sn	2705	$2f_{7/2}$	0.51 ± 0.07	0.49 ± 0.07	$0.54~\pm~0.08$	· .
	3325	$3p_{3/2}$	0.35 ± 0.04	0.23 ± 0.03	$0.27~\pm~0.03$	
	3881	$3p_{1/2}$	0.70 ± 0.06	0.43 ± 0.04	$0.49~\pm~0.04$	
¹²⁹ Sn	2705	$2f_{7/2}$	0.72 ± 0.09	0.67 ± 0.09	$0.75~\pm~0.10$	
	3317	$3p_{3/2}$	0.39 ± 0.05	0.24 ± 0.03	$0.29~\pm~0.04$	
	3913	$3p_{1/2}$	0.63 ± 0.09	0.44 ± 0.07	$0.46~\pm~0.07$	
131 Sn	2628	$2f_{7/2}$	0.75 ± 0.11	0.85 ± 0.11	$0.95~\pm~0.13$	
	3404	$3p_{3/2}$	0.75 ± 0.11	0.50 ± 0.11	$0.55~\pm~0.08$	
	3986	$3p_{1/2}$	1.00 ± 0.14	0.88 ± 0.14	$1.00~\pm~0.14$	
	4655	$2f_{5/2}$	$0.89~\pm~0.12$	0.66 ± 0.12	$0.76~\pm~0.11$	
¹³³ Sn	0	$2f_{7/2}$	0.86 ± 0.07	0.90 ± 0.07	$1.00~\pm~0.08$	
	854	$3p_{3/2}$	0.92 ± 0.07	0.87 ± 0.07	$0.92~\pm~0.07$	high ~ 1.0
	1363	$3p_{1/2}$	1.1 ± 0.2	1.3 ± 0.3	1.3 ± 0.3	
	2005	$2f_{5/2}$	1.5 ± 0.3	1.1 ± 0.3	1.3 ± 0.3	maximal

• determined spectroscopic factors

Nuclear Astrophysics with Radioactive Beams

Spectroscopic Factors			c Factors		B Manning et al	
^{A}X	E_x (keV)	nlj	DWBA	FR-ADWA-KD	FR-ADWA-CH	
¹²⁵ Sn	2769	$2f_{7/2}$	0.40 ± 0.03	0.36 ± 0.03	$0.39~\pm~0.03$	
	3385	$3p_{3/2}$	0.37 ± 0.04	0.24 ± 0.02	$0.29~\pm~0.03$	
	3998	$3p_{1/2}$	0.55 ± 0.07	0.34 ± 0.04	$0.42~\pm~0.05$	0
127 Sn	2705	$2f_{7/2}$	0.51 ± 0.07	0.49 ± 0.07	$0.54~\pm~0.08$	· · · · · · · · · · · · · · · · · · ·
	3325	$3p_{3/2}$	0.35 ± 0.04	0.23 ± 0.03	$0.27~\pm~0.03$	
	3881	$3p_{1/2}$	0.70 ± 0.06	0.43 ± 0.04	$0.49~\pm~0.04$	
129 Sn	2705	$2f_{7/2}$	0.72 ± 0.09	0.67 ± 0.09	$0.75~\pm~0.10$	
	3317	$3p_{3/2}$	0.39 ± 0.05	0.24 ± 0.03	$0.29~\pm~0.04$	
	3913	$3p_{1/2}$	0.63 ± 0.09	0.44 ± 0.07	$0.46~\pm~0.07$	$\sim E / \sqrt{1}$
131 Sn	2628	$2f_{7/2}$	0.75 ± 0.11	0.85 ± 0.11	$0.95~\pm~0.13$	
	3404	$3p_{3/2}$	0.75 ± 0.11	0.50 ± 0.11	$0.55~\pm~0.08$	
	3986	$3p_{1/2}$	1.00 ± 0.14	0.88 ± 0.14	$1.00~\pm~0.14$	
	4655	$2f_{5/2}$	$0.89~\pm~0.12$	0.66 ± 0.12	$0.76~\pm~0.11$	= marine has
133 Sn	0	$2f_{7/2}$	0.86 ± 0.07	0.90 ± 0.07	$1.00~\pm~0.08$	
	854	$3p_{3/2}$	0.92 ± 0.07	0.87 ± 0.07	$0.92~\pm~0.07$	
	1363	$3p_{1/2}$	1.1 ± 0.2	1.3 ± 0.3	1.3 ± 0.3	E man WIA
	2005	$2f_{5/2}$	$1.5~\pm~0.3$	1.1 ± 0.3	1.3 ± 0.3	

- constrain spin-parity, determine spectroscopic factors from angular distributions
- best fits using DWBA and ADWA with different potentials ٠
- used to constrain neutron capture cross sections in nuclei relevant for cold r-process models ٠
- systematic info on single particle levels off stability provides challenge for theorists ٠

Nuclear Astrophysics with Radioactive Beams

- commissioning SECAR with stable beams
- measurements with p-rich and n-rich beams at FRIB
- further development of new techniques (2-energy approaches) & detectors
- measurements at RAON 🥲 and other facilities

Summary

- measurements with radioactive beams have tremendous potential in nuclear astrophysics & other areas of nuclear science
- these measurements have many **special challenges** low intensity, low purity, limited species, poorly defined energies ...
- some approaches to try include
 - planning measurements with very LOW beam intensities (well below projected intensities)
 - combining direct & indirect measurements for valuable, complementary information on reactions and nuclei of interest
 - measuring kinematically complete (coincidence) reactions, measure multiple reaction channels, and tracking beam particles
- wish you great success with RISP / RAON !

