Overview of E14030 & E15190 at NSCL and Simulation

Jeonghyeok Park

Contents

- Equation of States and Symmetry Energy
- Effective Splitting
- Experiment Overview
- Neutron Simulation
- Summary

Equation of States and Symmetry Energy

- Binding energy of nuclear matter :
 - $B(A,Z) = a_{vol}A a_{sur}A^{2/3} a_{coul}\frac{Z(Z-1)}{A^{1/3}}$ $a_{sym}\frac{(N-Z)^2}{A} \pm \delta_{pair}$
- Equation of state :
 - $\varepsilon(\rho, \delta)A = Zm_p + Nm_n B(A, Z)$
 - $\varepsilon(\rho, \delta) = \varepsilon(\rho, \delta = 0) + E_{sym}(\rho)\delta^2 + O(\delta^4)$
 - where $\delta = \frac{\rho_n \rho_p}{\rho_n + \rho_p}$
- Symmetry energy is energy difference between the pure neutron matter and isospin symmetric matter.

Effective mass splitting

- In neutron-rich matter, many theories predict that the neutron and proton effective masses become different.
 - m_n* < m_p* at SLy4
 - m_n* > m_p* at SkM*
- Effective mass splitting strongly influences to the ratio of neutron over proton and other probes of the density dependence of symmetry energy.

Skyrme	S0 (MeV)	L (MeV)	m_n^*/m_n	m_p^*/m_p
SLy4	32	46	0.68	0.71
SkM*	30	46	0.82	0.76

Y. Zhang, M. B. Tsang, Z.Li, and H. Liu / Phys. Lett. B 732, 186 (2014)

Experimental overview

E14030 & E15190 : Probing the effective mass dependence of the symmetry energy & Probing the momentum dependence of the isovector mean field potential

- Feb 8 ~ Mar 25 @ NSCL
- ^{40,48}Ca beam(56, 140 AMeV) and ^{58,64}Ni, ^{112,124}Sn target were used
- HiRA(High Resolution Array)
 - Charged particle detection
- CPV(Charged Particle Veto)
 - Veto charged particles incident to neutron detector
- LANA(Large Area Neutron Array)
 - Neutron detection
 - NE213
 - Connected with FADC(Korea)

Why SCINFUL?

- MENATE_R
 - Based on GEANT4
 - Advanced with geometry
- TOTEFF
 - Based on FORTRAN code
 - Negative efficiency above 100 MeV of neutron
- SCINFUL-QMD
 - Based on FORTRAN code
 - Limitation with geometry
 - Switch to QMD model above 150 MeV

Principle of Neutron Detector

- Produced light inside of neutron detector mainly comes from elastic scattering with hydrogen.
- Not only from hydrogen, charged ions(proton, deuteron, triton, alpha) from inelastic scattering with carbon produce the light.
- Organic scintillator is combined one.

Figure 1. Schematic illustration of neutron detection. This figure is cited from Ref. 1

- Incorporate SCINFUL light output function
 - Light output for each particle is different.
- Incorporate SCINFUL cross-section
 - Up to 150 MeV of neutron
- Incorporate sequential decays
- Incorporate SCINFUL angular distribution

- Progress :
 - Incorporate SCINFUL light output function of p, d, t, ³He and α. – done
 - Incorporate SCINFUL cross-section done
 - Incorporate SCINFUL angular distribution done
 - Incorporate sequential decays from excited nucleus. – In progress

- Incorporate SCINFUL light output function
 - Light output for each particle is different.
- Incorporate SCINFUL cross-section
 - Up to 150 MeV of neutron
- Incorporate sequential decays
- Incorporate SCINFUL angular distribution

- Progress :
 - Incorporate SCINFUL light output function of p, d, t, ³He and α. – done
 - Incorporate SCINFUL cross-section done
 - Incorporate SCINFUL angular distribution done
 - Incorporate sequential decays from excited nucleus. – In progress

Light output function of NE213

- The light output for each particle is different.
- Light output from SCINFUL : colored lines.
 - Satoh et al., Radiation Protection Dosimetry (2007), Vol. 126, No. 1–4, pp. 555–558
 - doi:10.1093/rpd/ncm112
- Light output from NIM article : black lines
 - NIM A (2017) 868 73-81
 - doi : 10.1016/j.nima.2017.06.021

- Incorporate SCINFUL light output function
 - Light output for each particle is different.
- Incorporate SCINFUL cross-section
 - Up to 150 MeV of neutron
- Incorporate sequential decays
- Incorporate SCINFUL angular distribution

- Progress :
 - Incorporate SCINFUL light output function of p, d, t, ³He and α. – done
 - Incorporate SCINFUL cross-section done
 - Incorporate SCINFUL angular distribution done
 - Incorporate sequential decays from excited nucleus. – In progress

Channel List

- 11 channels are included in SCINFUL.
 - H(n,p)
 - ¹²C(n,n)
 - ¹²C(n,n')¹²C* ~ 4.44 MeV
 - ¹²C(n,2n)¹¹C
 - ¹²C(n,p)¹²B
 - ¹²C(n,np)¹¹B
 - ¹²C(n,d)¹¹B
 - ¹²C(n,t)¹⁰B
 - ¹²C(n,³He)¹⁰Be
 - ¹²C(n,α)⁹Be
 - ¹²C(n,n3α)
- Sequential decays are not included in GEANT4.

Light response

12.7 cm

12.7 cm

Light response

- At the high energy of neutron results from GEANT4 have good agreements with SCINFUL.
- QGSP_BIC physics list is adopted for the high energy neutron.

12.7 cm 12.7 cm

Compare with Experiment data

- From 50 MeV of neutron, simulation and data has no agreements.
- Sequential decays are not incorporated.

- Incorporate SCINFUL light output function
 - Light output for each particle is different.
- Incorporate SCINFUL cross-section
 - Up to 150 MeV of neutron
- Incorporate sequential decays
- Incorporate SCINFUL angular distribution

- Progress :
 - Incorporate SCINFUL light output function of p, d, t, ³He and α. – done
 - Incorporate SCINFUL cross-section done
 - Incorporate SCINFUL angular distribution done
 - Incorporate sequential decays from excited nucleus. – In progress

Neutron Detector Efficiency

- Neutron detection efficiency
 - Cylinder, 17.78 cm thickness, 0.45 MeVee biased
 - Cylinder, 12.7 cm thickness, 4.33 MeVee biased
 - Bar, 7 cm thickness, 3 MeVee biased
 - Bar, 7 cm thickness, 5 MeVee biased

Neutron detection efficiency (%)

- Incorporate SCINFUL light output function
 - Light output for each particle is different.
- Incorporate SCINFUL cross-section
 - Up to 150 MeV of neutron
- Incorporate sequential decays
- Incorporate SCINFUL angular distribution

- Progress :
 - Incorporate SCINFUL light output function of p, d, t, ³He and α. – done
 - Incorporate SCINFUL cross-section done
 - Incorporate SCINFUL angular distribution done
 - Incorporate sequential decays from excited nucleus. – In progress
- Because of the export control for SCINFUL, simulation work has been stopped now.
- Neutron simulation with GEANT4 and SCINFUL will be developed after getting permission from NEA(Nuclear Energy Agency).

- An experiment(E14030 & 15190) for probing effective mass dependence of symmetry energy was conducted at NSCL in 2018.
- In order to estimate the efficiency of the NE213 organic scintillator, GEANT4 was used with SCINFUL data.
- GEANT4 simulates well at the high energy of the neutron.
- Neutron simulation is still under development.
- Neutron simulation will be developed after getting permission from NEA.

Neutron Detector Efficiency

Back up : Equation of States and Symmetry Energy

- Binding energy of nuclear matter :
 - $B(A,Z) = a_{vol}A a_{sur}A^{2/3} a_{coul}\frac{Z(Z-1)}{A^{1/3}} a_{sym}\frac{(N-Z)^2}{A} \pm \delta_{pair}$
- Equation of state :
 - $\varepsilon(\rho, \delta)A = Zm_p + Nm_n B(A, Z)$
 - $\varepsilon(\rho, \delta) = \varepsilon(\rho, \delta = 0) + \frac{E_{sym}(\rho)\delta^2}{E_{sym}(\rho)\delta^2} + \mathcal{O}(\delta^4)$
- Symmetry energy is energy difference between the pure neutron matter and isospin symmetric matter.

•
$$E_{sym}(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2$$

• $L = \frac{3}{\rho_0} P_{sym} = 3\rho_0 \left. \frac{\partial E_{sym}(\rho)}{\partial \rho} \right|_{\rho = \rho_0}$ (slope)
• $K_{sym} = 9\rho_0^2 \left. \frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2} \right|_{\rho = \rho_0}$ (curvature)

Back up : $S_0 - L$

Experimental overview

E14030 & E15190 : Probing the effective mass dependence of the symmetry energy & Probing the momentum dependence of the isovector mean field potential

- Feb 8 ~ Mar 25 @ NSCL
- ^{40,48}Ca beam(56, 140 AMeV) and ^{58,64}Ni, ^{112,124}Sn target were used
- HiRA(High Resolution Array)
 - Charged particle detection
- CPV(Charged Particle Veto)
 - Veto charged particles incident to neutron detector
- LANA(Large Area Neutron Array)
 - Neutron detection
 - NE213
 - Connected with FADC(Korea)

Beam	Target	Shadow bars	Avg trigger rate	Total time [HH:MM:SS]
Ca40@56	¹¹² Sn	OUT IN	2107 2413	12:39:56 18:28:50
MeV/u		TOTAL	2289/ 256M	31:08:46
Ca40@56	¹²⁴ Sn	OUT IN	0 2841	0 08:40:31
MeV/u		TOTAL	2841/ 88M	08:40:31
Ca40@56 MeV/u	⁵⁸ Ni	OUT IN	2558 2694	16:26:05 21:05:26
		TOTAL	2635/ 355M	37:31:31
Ca40@56 MeV/u	⁶⁴ Ni	OUT IN	0 2751	0 08:05:27
		TOTAL	2751/80M	08:05:27
Ca40@140	¹¹² Sn	OUT IN	2168 2016	08:25:27 43:53:08
MeV/u		TOTAL	2041/ 384M	52:18:35
Ca40@140	¹²⁴ Sn	OUT IN	3057 198	07:56:28 10:52:46
MeV/u		TOTAL	1404/ 95M	18:49:14
Ca40@140	⁵⁸ Ni	OUT IN	3651 2931	12:26:46 32:24:36
MeV/u		TOTAL	3131/ 505M	44:51:22
Ca40@140	⁶⁴ Ni	OUT IN	0 2915	0 11:28:46
MeV/u		TOTAL	2915/ 120M	11:28:46

Beam	Target	Shadow	Avg	Total time
		bars	rate	[HH:WW:55]
	¹¹² Sn	OUT	2812	06:39:33
Ca48@56		IN	2756	08:00:24
MeV/u		TOTAL	2781/ 146M	14:39:57
	¹²⁴ Sn	OUT	2558	26:06:27
Ca48@56 MeV/u		IN	2756	23:52:39
		TOTAL	2653/ 477M	49:59:06
	⁵⁸ Ni	OUT	2619	05:41:13
Ca48@56		IN	2691	08:00:10
MeV/u		TOTAL	2661/ 131M	13:41:23
Ca48@56 MeV/u	⁶⁴ Ni	OUT	2762	25:40:37
		IN	2824	29:27:25
		TOTAL	2795/ 554M	55:08:02
Ca48@140 MeV/u	¹¹² Sn	OUT IN	2332 2435	06:07:25 07:05:39
		TOTAL	2387/ 113M	13:13:04
	¹²⁴ Sn	OUT	2590	18:33:19
Ca48@140		IN	2229	27:50:59
MeV/u		TOTAL	2373/ 396M	46:24:18
	⁵⁸ Ni	OUT	2353	07:34:11
Ca48@140 MeV/u		IN	2334	06:54:51
		TOTAL	2344/ 122M	14:29:02
	⁶⁴ Ni	OUT	2705	18:26:12
Ca48@140		IN	2273	27:55:13
MeV/u		TOTAL	2444/ 408M	46:21:25

Back up : Charged Particle Veto

Back up : Previous experiment result

