Event Reconstruction with SπRIT-TPC

Jung Woo Lee

Experiment Motivation

 $E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \cdot \delta^{2} + \mathcal{O}(\delta^{4})$ $E_{sym}\left(\rho\right) \approx E\left(\rho,1\right) - E\left(\rho,0\right)$

 $\delta = \left(\rho_n - \rho_p\right) / \rho$

- The liquid drop model predicted bulk properties of nuclear matter.
- The symmetry energy determines the properties of neutron rich/poor system.
- Symmetry energy depends on pressure, temperature, isospin asymmetry etc.

Experiment Overview

- Experiment was performed at RIBF, RIKEN, Japan.
- SAMURAI magnet producing magnetic field; 0.5 T.
- NeuLAND was placed downstream for neutron measurement.
- Beam energy 270 MeV/u
- Collision systems:
 - 132Sn + 124Sn
 - 124Sn + 112Sn
 - 108Sn + 124Sn
 - 108Sn + 112Snlacksquare

October 31, 2019

SπRIT Time Projection Chamber (TPC)

- Effective gas dimension;
 (864,1344,530) mm
- P10 gas (Ar 90 % + CH₄ 10 %) with electric field; 124.73 V/cm.
- Pad plane containing 108×112 rectangular pads (8×12 mm)
- KATANA Array and Kyoto Array were used for multiplicity trigger Array.

SπRIT Time Projection Chamber (TPC)

- Effective gas dimension; (864,1344,530) mm
- P10 gas (Ar 90 % + CH₄ 10 %) with electric field; 124.73 V/cm.
- Pad plane containing 108×112 rectangular pads (8×12 mm)
- KATANA Array and Kyoto Array were used for multiplicity trigger Array.

Software Overview and Challenge

- 1) simulation and 2) event reconstruction.
- which mimics the electronics ouput.
- Event reconstruction contains:
 - Pulse analysis
 - Track finding
 - Hit-cluster finding
 - Track and vertex reconstruction
 - Particle identification

• The SπRITROOT software is built on top of FairROOT framework which is developed for

Simulation part uses Geant4 for Monte Carlo process and digitization is developed

• Challenges:

- Covering primary vertex region with large track density.
- Target and projectile fragments saturates pads and kill electronics.
- Extending dynamic range.
- Rectangular TPC.

Software Overview and Challenge

Extending dynamic range

function analysis.

• Upper limit of dynamic range (shown as pad saturation) is extended by pad response

Pulse Analysis

- Pulse Analysis was performed finding overlapping pulses in TPC pads.
- The method use the multi-pulse fitting using reference extracted from the pulse data.
- One hit finding efficiency = 95 ± 1 % and two hit separation efficiency(right figure) is measured.

Track finding

Hit-Cluster Finding

- Hit-Clusters are created by adding hits of same layer (or same row) depending on the track angle.
- Track direction and hit residual angle decides the type of cluster.
- Hit-clusters are points used for measurement points in track reconstruction and points for < dE/dx >.

11

Track and Vertex Reconstruction

- finding one vertex.

• Track reconstruction: GENFIT considering field map, measurement error and material effect. • Vertex reconstuction: RAVE, Adaptive Vertex Fitter (AVF) an iterative weighted Kalman filter

October 31, 2019

Track and Vertex Reconstruction

Particle Identification

- For particle identification, rigidity (p/Z) vs <dE/dx> spectrum is used.
- Momentum and charge is identified from GENFIT.
- track.

<dE/dx> is truncated mean of (dE/dx) points from hit-clusters of corresponding

Particle Identification

Summary

- with neutron rich/poor systems.
- which is also capable of simulation and analysis.
- Physics observables for nuclear symmetry energy is being studied.

• For study of symmetry energy, $S\pi RIT$ -TPC experiment measured heavy-ion collision

The software framework SπRITROOT is developed to reconstruct experiment data

