1st RAON Users' Workshop IBS, Korea, April 3-5, 2019

Some thoughts on possible measurements with LAMPS

Byungsik Hong (Korea University)

Layout of RAON

RAON

Brief History

* RAON

Brief History

New idea about LAMPS detectors at low-energy experimental hall

- LaBr₃(Ce) gamma detector system
 - Total 24 modules with fast timing PMTs $(R_t < 200 \text{ ps}, R_E < 3.5\%, \varepsilon \sim 6.8\% \text{ at } 664 \text{ keV})$
 - Plan to build 12 modules by 2020

New idea about LAMPS detectors at low-energy experimental hall

FAZIA type Si+Csl detector (configuration)

1st element: reverse mount 300 μm thick, nTD Silicon of doping uniformity apt to PSA 2nd element: reverse mount 500 μm thick, nTD Silicon for redundant PSA 3rd element: 10 cm long CsI(Tl) crystal, coupled to Si-photodiode <u>First and second Silicon detectors are cut out of a <100> crystal along a properly</u> <u>selected direction in order to avoid channelling.</u>

Total thickness variation of both Silicon detectors over the active area \approx 2-3 μ m

New idea about LAMPS detectors at low-energy experimental hall

 FAZIA type Si+Csl detector (PID capability)

New idea about LAMPS detectors at low-energy experimental hall

AT-TPC

- Amplification: GEM or μ PIC
- Superconducting solenoid magnet: 1.5 T, inner radius & length = 60 cm each
- Magnet construction in 2019
- AT-TPC construction in 2020

New idea about LAMPS detectors at low-energy experimental hall

Nuclear structure

- Cluster linear chain of ¹⁴C: Ikeda diagram [PRC 432, 43 (2006)]
 - ¹⁰Be+ $\alpha \rightarrow$ ¹⁰Be+ α , ⁶He+ 2α
 - Angular correlation θ_{Lab}^{Be10} vs. θ_{Lab}^{α} and E_X distribution give J^{π} information.

Nuclear structure

- Cluster state of ¹²Be: ⁸He+ α @ 17 MeV at TRIUMF
 - Elastic reaction: ${}^{8}\text{He}(\alpha, \alpha'){}^{8}\text{He}$
 - Transfer reactions: ⁷He+⁵He, ⁶He+⁶He, (Search for resonant states)
 - Range vs. angle, angular correlation
- Neutron-rich C isotopes: Cluster vs. molecular states
 - ^xC(α, α') with X=14, 16, 18, 20, etc. (exotic α condensates)
- Resonance scattering of ⁴⁶Ar on p (isobutane)
 - Proton energy vs. scattering angle
 - ReA3 proposal
- np pairing in N=Z nuclei using (³He,p) reactions

Very nice presentations by Gregory Rogachev and Leonid Grigorenko in the plenary session in April 3

Symmetry pressure and radii

 The density profile can be approximated by a Fermi function:

$$\rho(r) = \frac{\rho_0}{1 + \exp[(r - R)/a]}$$

- R_n vs. E_{sym}
 - P_{sym} is larger if $E_{sym}(\rho)$ is strongly density dependent:

$$P_{sym} = \rho_0^2 \frac{\partial E_{sym}(\rho)}{\partial \rho} \Big|_{\rho = \rho_0}$$

$$P_{n-matter} = P_{symmetric-matter} + P_{sym}$$

- The symmetry pressure repels neutrons and attracts protons.
- A stiff symmetry energy results in a larger neutron skin.

Measurement of radii

- Electron scattering may provide strong constraints on $\langle r_n^2 \rangle^{1/2} \langle r_p^2 \rangle^{1/2}$ and subsequently $E_{sym}(\rho)$ for $\rho < \rho_0$
 - Expected uncertainties of order 0.06 fm by Horowitz et al., PRC 63, 025501 (2001)
 - Cf., $\langle r_p^2 \rangle^{1/2}$ for stable nuclei measured by electron scattering to accuracy of ~0.02 fm
- Strong interaction shifts in the $4f \rightarrow 3d$ transition in pionic ²⁰⁸Pb
 - Also sensitive to the rms radius of neutrons by Garcia-Recio, NPA 547, 473 (1992) $\langle r_n^2 \rangle^{1/2} = 5.74 \pm .07_{ran} \pm .03_{sys}$ fm

$$\langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{\frac{1}{2}} = 0.22 \pm .07_{ran} \pm .03_{sys} \text{ fm}$$

- Various neutron rich isotope target을 이 용하여 중성자 반지름을 도출
- Very nice presentation by Atsushi Tamii in the plenary session in April 3.

Karataglidis et al., PRC 65, 044306 (2002)

Dipole emission in fusion

- LaBr₃(Ce)(+FAZIA) experiments at LE
- Neck, PDR, GDR, and more
- Light beams
 - $XAr + {}^{96}Zr$ with X=36 (reference) and > 40
 - ^xS+¹⁰⁰Mo with X=32 (reference) and > 40
 - Comparison with LNS data [D. Pierroutsakou et al., PRC 80, 024612 (2009)]
 - Solid symbols: Charge asymmetric ³⁶Ar+⁹⁶Zr and ³²S+¹⁰⁰Mo

Dipole emission

- Systematic study using heavier beams
 - n-poor system vs. n-rich system
 - ^xCa beams with X=50, 54, 60, ...
 - XNi beams with X=68, 70, 72, ...
 - XSn beams with X=112, 124, 130, 132, ...
- Repeat similar experiments at high energies Oscillation in O(10 MeV)
 - \rightarrow Diffusion in $\mathcal{O}(50 \text{ MeV})$
 - \rightarrow Nuclear structure of neutron skin, PDR, and GDR in $\mathcal{O}(\sim 200 \text{ MeV})$
 - \rightarrow Isospin equilibration in nuclear stopping power in $\mathcal{O}(> 200 \text{ MeV})$
- Talk by Carlos Bertulani in April 4

Dipole emission in n-rich nuclei

X. Roca-Maza et al., PRC 85, 024601 (2012)

HF+RPA with various Skyrme potentials

L = SGII (38 MeV) < SLy5 (48 MeV) < SkI3 (100 MeV)

PDR is sensitive to Asy-EOS: A larger L gives a larger strength

Dipole emission of n-rich nuclei

A. Klimkiewicz, et al., PRC76, 051603(R) (2007)

 RPA calculations show a strong correlation between the n-p radius difference and the fractional strength in the PDR.

Dipole emission of n-rich nuclei

RPA calculations show a strong correlation between the fractional strength and the symmetry pressure or parameter *L*.

$$L = 64.8 \pm 15.7 \text{ MeV}$$

Isospin mixing

- Charge equilibration
 - In fusion, dipole oscillation is important
 - In deep inelastic coll., dipole oscillation is overdamped: Diffusion of charges

$$D(t) = D(0) \exp(-t/\tau_d) \qquad (\tau_d \to E_{sym})$$
ree of equilibration governed 1.08 asy-soft+si asy-soft+si asy-stiff+s

- Degree of equilibration governed by contact time and symmetry energy
- Observable: N/Z of light charged particles emitted by PLF as a function of dissipated energy:
 (N/Z)_{CP} vs. E_{diss} ≡ E_{cm} − E_{kin}(PLF + TLF)

Isospin mixing (neck)

Isospin mixing (neck)

• Isospin asymmetry of PLF and TLF \implies Low-density neck

- Effect related to the symmetry pressure, L
- Stiff *E_{sym}*: Larger isospin
 migration effect

The asymmetry of the neck is larger than the asymmetry of PLF (TLF) in the Asy-stiff case.

Isospin mixing (diffusion)

⊖ Zr+Ru

Isospin mixing (diffusion)

Reactions

¹²⁴Sn+¹¹²Sn: diffusion
¹¹²Sn+¹²⁴Sn: diffusion
¹²⁴Sn+¹²⁴Sn: n-rich limit
¹¹²Sn+¹¹²Sn: p-rich limit

- Exchanging the target & projectile
 - Allowed full rapidity dependence to be measured.
- $R_i(\alpha)$ near beam rapidity $R_i(\alpha) \approx 0.47 \pm 0.05 (^{124}\text{Sn} + ^{112}\text{Sn})$ $R_i(\alpha) \approx -0.44 \pm 0.05 (^{112}\text{Sn} + ^{124}\text{Sn})$
- $= R_i [\ln\{Y(^7\text{Li})/Y(^7\text{Be})\}]$
 - Exploration of the rapidity dependence

$$R_{i}(\delta) = 2 \frac{\delta - (\delta_{n-rich} + \delta_{p-rich})/2}{\delta_{n-rich} - \delta_{p-rich}}$$

Liu et al., PRC 76, 034603 (2007)

Isospin mixing (diffusion)

Directed flow

Relative flow:

t-³He differential flow:

$$\langle p_x^t / A \rangle - \langle p_x^{^{3}\text{He}} / A \rangle = \frac{1}{N_t} \sum_{i=1}^{N_t} p_x^i / A - \frac{1}{N_{^{3}\text{He}}} \sum_{i=1}^{N_{^{3}\text{He}}} p_x^i / A$$
$$\langle p_x^{t^{-^{3}\text{He}}} / A \rangle = \frac{1}{N_t + N_{^{3}\text{He}}} \left(\sum_{i=1}^{N_t} p_x^i / A - \sum_{i=1}^{N_{^{3}\text{He}}} p_x^i / A \right)$$

 132 Sn+ 124 Sn @ 400A MeV x = 1: Asy-Supersoft x = -1: Asy-Stiff

> Larger A ⇒ larger sensitivity to Asy-EOS

G.-C. Yong et al., PRC 80, 044608 (2009)

Tentative Schedule if beams are available

	1단계 (~2025)	2단계 (2026~2030)	3단계 (2031-2040)
극한 핵물질 상태	 Low-energy reactions Cluster linear chain of ¹⁴C (¹⁰Be+α, ⁶He+2α) Cluster state of ¹²Be (⁸He+α) Some nuclear astrophysics reactions in rp- and r-processes (¹⁴O(α, γ)¹⁸Ne, ¹⁴O(α, p)¹⁷F, ¹⁵O(α, γ)¹⁹Ne, ²²Mg(α, p)²⁵Al) High-energy reactions 	 Low-energy reactions Neutron-rich C isotopes: Cluster vs. Molecular states (^XC(α,α') with X=14, 16, 18, 20, more even numbers) Dipole emission (³⁶Ar+⁹⁶Zr and ³²S+¹⁰⁰Mo for comparison) High-energy reactions Charge radii of neutron-rich 	 Low-energy reactions Dipole emission (^xSn+^ySn with X=106, 112, 124, 130, 132 and Y=112, 118, 124) High-energy reactions Dipole emission (^xSn+^ySn with X=106, 112, 124, 130, 132 and Y=112, 118, 124) Isospin dependence of directed and elliptic flow
	 Isospin mixing (^xCa+Pb with X=50, 54, 60, ^xNi+Pb with X=68, 70, 72, ^xSn+Pb with X=106, 112, 124, 130, 132 at ~50A MeV) 	nuclei (²⁰⁸ Pb(p,p')) Isospin mixing (¹²⁴ Sn+ ¹¹² Sn ¹¹² Sn+ ¹²⁴ Sn ¹²⁴ Sn+ ¹²⁴ Sn, ¹¹² Sn+ ¹¹² Sn)	(¹²⁴ Sn+ ¹¹² Sn ¹¹² Sn+ ¹²⁴ Sn ¹²⁴ Sn+ ¹²⁴ Sn, ¹¹² Sn+ ¹¹² Sn)

Summary

- Detector
 - RISP and LAMPS are in close collaboration for developing and constructing the detector components for high-energy LAMPS.
 - SRC is adding additional fuel to the development of several elements like AT-TPC, LaBr₃(Ce), FAZIA, Si for low-energy LAMPS.
- Physics
 - Nuclear astrophysics, nuclear structure, nuclear symmetry energy are the major research topics for low-energy LAMPS.
 - Nuclear symmetry energy is the prime goal for high-energy LAMPS, but nuclear structure can be also studies.
 - Very good opportunity to study the energy dependence of various variables, e.g., the isospin mixing parameter and dipole emission.

We need to seriously think about the following items:

- More idea on physics, of course
- List of beam species to request (priority)
- Realistic timeline for the detector development and construction
- Detailed plan to perform specific experiment and analysis
- Collaboration issue (how to get there?)