Measuring compound nucleus reaction using solenoid-based detector system

Kyungyuk Chae (kchae@skku.edu)

http://nucastro.skku.edu

November 1, 2019

The question driving the nuclear astrophysics

11 greatest unanswered questions of Physics (National Academy of Science Report, 2002)

- 1. What is dark matter?
- 2. What is dark energy?
- 3. How were the heavy elements from iron to uranium made?
- 4. Do neutrinos have mass?
- 5. Where do ultrahigh-energy particles come from?
- 6. Is a new theory of light and matter needed to explain what happens at very
- high energies and temperatures?
- 7. Are there new states of matter at ultrahigh temp
- 8. Are protons unstable?
- 9. What is gravity?
- 10. Are there additional dimensions?
- 11. How did the universe begin?

Needs in experimental nuclear astrophysics & structure

- Radiative capture reactions, $(\rho, \gamma) \& (\alpha, \gamma)$, require high beam intensities
 - (direct measurements)
- Transfer reaction measurements can give spectroscopic information:
 (*d*,*p*), (³He,*d*), etc. (indirect measurements)

November 1, 2019

transfer reactions in normal kinematics

- To study single-particle (single-hole) states (energies, angular momentum, spectroscopic information)
- Traditionally, light beams on heavy targets (normal kinematics)

- A neutron is transferred from the deuteron to the target nucleus, forming a recoil nucleus.
- The proton is ejected from the system, in a **forward direction**. Its energy and angle carries information on the nuclear state populated.

```
e.g. <sup>12</sup>C(d,p)<sup>13</sup>C, <sup>16</sup>O(d,p)<sup>17</sup>O, <sup>124</sup>Sn(d,p)<sup>125</sup>Sn, <sup>208</sup>Pb(d,p)<sup>209</sup>Pb
```


Probably, the most efficient target ever

- Isotopically-enriched ²⁴Mg
- ~ \$500 for 3 targets

(2007)

Constraint on the astrophysical ¹⁸Ne(a,p)²¹Na reaction rate through a ²⁴Mg(p,t)²²Mg measurement Phys. Rev. C **79**, 055804 (2009)

Spin assignments to excited states in ²²Na through a ²⁴Mg(p,³He)²²Na reaction measurement Phys. Rev. C **82**, 047302 (2010)

²⁴Mg(p,a)²¹Na reaction study for spectroscopy of ²¹Na J. Korean Phys. Soc. **67**, 1435 (2015)

Spectroscopic study of the radionuclide ²¹Na for the astrophysical ¹⁷F(a,p)²⁰Ne reaction rate Phys. Rev. C **96**, 025810 (2017)

Measuring one nucleon transfer reaction ²⁴Mg(p,d)²³Mg for astrophysical reaction rates J. Korean Phys. Soc. **67**, 1435 (2017)

Spin assignments for ²³Mg levels Submitted to Eur. Phys. J A (2019)

Proton decay of ²¹Na for ²⁰Ne energy levels will be submitted to J. Korean Phys. Soc. (2019)

Example: ${}^{24}Mg(p,t){}^{22}Mg$ for ${}^{18}Ne(\alpha,p){}^{21}Na$

- astrophysical ¹⁸Ne(α ,p)²¹Na reaction rate
- A.A. Chen *et. al.* (2001) - ¹²C(¹⁶O,⁶He)²²Mg reaction
 - Found 18 new levels over wide range
- Spins & Parities assignments are still required

- 16 radial strips (5-13 cm)
 → angular distributions
- 100 μm 1000 μm
 - → "telescope mode" for particle ID ($\Delta E \cdot E \propto MZ^2$)
- proton beams from tandem accelerator (*E*_{beam} = 41 & 41.5 MeV)
- 500 μ g/cm² pure ²⁴Mg targets

Results

Angular distributions

E_x	0+	1-	2^{+}	3-	4^{+}
3308	61.93	9.38	37.60	28.12	4.11
4402	87.85	35.05	5.09	57.35	40.43
5035	54.51	11.88	5.87	31.71	12.58
6045	7.65	55.19	70.18	25.00	20.80
7967	21.50	9.29	2.35	16.24	11.45
8495	19.06	13.31	3.35	14.12	10.38
9544	26.89	3.61	12.93	27.78	22.80
9773	8.49	2.54	4.60	11.15	9.14
10414	12.19	1.21	6.16	16.55	14.00
11611	3.32	3.67	2.46	1.34	1.20
11950	4.30	1.99	0.95	6.04	10.09

- **DWBA calculations** using DWUCK5
- Optical parameters taken from Fleming *et al.* Nucl. Phys. A **162** 225 (1971): ¹⁶O(*p*, *t*)¹⁴O
- Hauser-Feshbach calculations of ${}^{24}Mg(p,t){}^{22}Mg$ angular distribution $\rightarrow 0.01-5\%$, nearly flat

¹⁸Ne(α , p)²¹Na reaction rate

- Resonance parameters from A.A. Chen *et al.* PRC **63**, 065807 (2001)
- 7 levels between 8.495 and 9.827 MeV
- J^π values of 8.945- and 9.773-MeV levels were taken from present work (2⁺ and 1⁻)
- Resonance strengths have been corrected
- Reaction rate is valid at T = 0.2-1.0 GK
- Can be considered as a lower limit

• Reaction rate is a factor of 4 smaller than the one from Chen et al.

Chae et al., Phys. Rev. C 79, 055804 (2009)

Transfer reaction measurements in inverse kinematics

- short-lived radioactive nuclei beams various (d,p) reactions are possible
- The proton is ejected over a wide range of angles.
 - \rightarrow large solid angle, good energy resolution are required

(d,p) measurements in inverse kinematics

12/26

November 1, 2019

(d,p) measurements in inverse kinematics

Oak Ridge Rutgers University Barrel Array

S. D. Pain ORNL

November 1, 2019

CENuM-RULiC Joint Workshop

previous works

- ¹³²Sn(d,p)¹³³Sn double magicity (K.L. Jones, **Nature**)
- ¹⁰Be(d,p)¹¹Be systematic study (K.T. Schmitt, **Phys. Rev. Lett**.)
- ¹³⁰Sn(d,p)¹³¹Sn single particle levels (R.L. Kozub, **Phys. Rev. Lett**.)
- ²⁶Al(d,p)²⁷Al mirror states for astrophysics (S.D. Pain, Phys. Rev. Lett.)
- ⁸⁰Ge(d,p)⁸¹Ge light fission fragment (S. Ahn, Phys. Rev. C)
- ^{126,128}Sn(d,p)^{127,129}Sn tracking the single-neutron levels (B. Manning, Phys. Rev. C)
- ¹³⁴Te(d,p)¹³⁵Te away from double shell closures (S.D. Pain)
- ...

Solenoid-based charged particle detector system

Helical Orbit Spectrometer, HELIOS

- designed for transfer reaction measurements in inverse kinematics with RIBs
- large-bore, uniform-field magnetic solenoid with $B \sim 3$ Tesla
- \rightarrow better Q-value resolution, large solid angle, easy particle ID
- used with RIBs from ATLAS ¹⁷O(*d*,*p*), ¹⁹O(*d*,*p*), ⁸⁶Kr(*d*,*p*), ...

16/26

Solenoid Spectrometer for Nuclear Astrophysics (SSNAP)

- TwinSol: a pair of superconducting solenoids for RIB production (⁷Be, ¹⁷F, ²⁵Al,... light particles)
- SSNAP: Solenoid Spectrometer for Nuclear Astrophysics, similar to HELIOS
- used to detect light charged ejectiles from reactions important for astrophysics
- path: determined by charge-to-mass ratio, energy, ejected angle
- time-of-flight, energy, position of ejectile can be measured
- \rightarrow *E*_{c.m.} and $\theta_{c.m.}$ can be reproduced!

17/26

November 1, 2019

New SSNAP with Super X3

Figure taken from O'Malley

- Super X3 detectors
 - 4 resistive front strips, 4 back segments
 - energy resolution: ~ 55 keV (back), ~ 75 keV (front)
 - position resolution: ~ 1.2 mm
 - 7.5 cm long active area
- updated frame for better data
- versatile array: (*d*,*p*), (*p*,*t*), (³He,*t*)...
- ${}^{12}C(d,p){}^{13}C$ measurement for commissioning
- astrophysical ²⁴Mg(α, ρ)²¹Na reaction?

November 1, 2019

Sensitivity study

• A. Parikh *et al.*, ApJS **178** 110 (2008) "The effects of variations in nuclear processes on type I x-ray burst nucleosynthesis"

• Koike *et al.* 2004 (K04) model:

- a spherically symmetric, multizone model of accretion onto a 1.3 M_{\odot} neutron star

- peak temperature of 1.36 GK
- densities ranging from 0.54-1.44 g/cm³
- burst duration of ~ 100 seconds

• investigates the effect of reaction rate variations in final abundance ratios by a factor of 10 (up and down)

²⁴Mg(α , ρ)²⁷Al reaction affects on the final abundances of ³⁴S and ³⁰Si, and the **total nuclear energy** of burst

TABLE 20

Nuclear Processes Affecting the Total Energy Output by More than 5% and at Least One Isotope

Reaction	Models Affected
$^{15}O(\alpha, \gamma)^{19}Ne^{a}$	K04, K04-B1, K04-B6
$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}^{a}$	K04-B1, K04-B6
$^{22}Mg(\alpha, p)^{25}Al$	F08
23 Al $(p, \gamma)^{24}$ Si	K04-B1
$^{24}Mg(\alpha, p)^{27}Al^{a}$	K04-B2
26g Al $(p, \gamma)^{27}$ Si ^a	F08
${}^{28}\text{Si}(\alpha, p){}^{31}\text{P}^{a}$	K04-B4
30 S(α , p) 33 Cl	K04-B4, K04-B5
$^{31}Cl(p, \gamma)^{32}Ar$	K04-B3
$^{32}S(\alpha, p)^{35}Cl$	K04-B2
$^{35}Cl(p, \gamma)^{36}Ar^{a}$	K04-B2
${}^{56}\text{Ni}(\alpha, p){}^{59}\text{Cu}$	S01
${}^{59}Cu(p, \gamma){}^{60}Zn$	S01
${}^{65}\text{As}(p, \gamma){}^{66}\text{Se}$	K04, K04-B2, K04-B3
${}^{69}\text{Br}(p, \gamma){}^{70}\text{Kr}$	S01
71 Br(<i>p</i> , γ) ⁷² Kr	K04-B7
103 Sn(α , p) 106 Sb	S01

The ²⁴Mg(α , p)²⁷Al reaction

²⁴Mg(α , p)²⁷Al measurement at U. of Notre Dame

- α beams (/ ~ 2 nA) from 10 MV FN tandem accelerator
- E_{beam} = 3 5 MeV (E_{c.m.} = 2.6 4.3 MeV)
- evaporated ²⁴Mg solid targets (~ 50 μ g/cm² thick) on thin ¹²C backing material (~ 5 μ g/cm² thick)
- $\Delta E_{\text{beam}} \sim 30-40$ keV, about 40 beam energies
- ~ few hours per beam energy

Preliminary results

November 1, 2019

CENuM-RULiC Joint Workshop

Future Plan

- develop simulation code for SSNAP
- extract differential cross section values at $E_{\text{c.m.}} = 2.6 4.3 \text{ MeV}$
- identify populated resonances in ²⁴Mg+ α (²⁶Si) system
- *R*-matrix fitting for resonance parameters
- ²⁴Mg(α ,p)²⁷Al reaction rate calculation

SKKU

• nucleosynthesis calculation

²⁷Al+*p* [Nelson *et al.* PRC **29**, 1656 (1984)] and ²⁴Mg(*α*,*α*) [Nucl. Phys. A **385**, 43 (1982)]

24Mg(a,p) --- R-matrix estimate

November 1, 2019

CENuM-RULiC Joint Workshop

24/26

5.5

Korea Broad acceptance Recoil spectrometer and Apparatus

Summary

• Solenoid-based detector system SSNAP was originally developed for transfer reaction studies

• SSNAP was used to measure astrophysical ${}^{24}Mg(\alpha, p){}^{21}Na$ reaction

 Excitation function for the reaction was obtained at Ec.m. = 2.6-4.3 MeV by using a beams at various beam energies from FN tandem accelerator

Data analysis is on going

Thank you very much!

