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Shapes of Atomic Nuclei 

Prolate Oblate Triaxial

Possible shapes of deformed nuclei
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Shapes of Atomic Nuclei 
Coordinate: ‘Hill-Wheeler’ coordinate

P. Cejnar et al., Rev. Mod. 
Phys. 82, 2155 (2010)
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Parametrization of 
Quadrupole Deformation



Shapes of Atomic Nuclei 

Prolate Oblate Triaxial 

Degree of deformation: β, degree of asymmetry: γ

Possible shapes of deformed nuclei
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Shapes of Atomic Nuclei 
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Degree of deformation: β

Degree of asymmetry: γ



Shapes of Atomic Nuclei 
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Triaxial shape?

neutron-rich  
isotopes

Candidates of the triaxial ground-state shape

P. Moller et al., Phys. Rev. 
Lett. 97, 162502 (2006) 

Δ𝐸𝛾 = 𝐸𝑎𝑠𝑦𝑚 − 𝐸
𝑠𝑦𝑚



Shapes of Atomic Nuclei 
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Rotor models for  A ~ 110 nuclei

More Information ➞ Better Understanding
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Axially symmetric 
rotor with γ-vibration 

γ-unstable rotor model Rigid triaxial rotor model
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Neutron number
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: γ-ray Energy (21+ → 01+)

102Mo

104Mo 106Mo

108Mo

: deformation parameter
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① Higher excited states 

: energy spacing related to γ (110Mo). 

② Lifetime measurement of         state 

:the deformation parameter β of ground 

state (106,108,110Mo).

: identified in the previous study 
: identified in the new results

11

0+
2+

4+
2+3+

𝛾

𝛾
6+

4+
5+

7+

6+

𝛽−

106,108,110Nb 

106,108,110Mo 

β-γ Decay Spectroscopy

2+1
<latexit sha1_base64="ncx3xYI0GzWvD4BUTHkN8DOCesc=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBZBEEqShrbeil48VjCt0May2W7bpZtN2N0IpfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGnb/rByK6tr6xv5zcLW9s7uXnH/oKXiVBLqk5jH8jbEinImqK+Z5vQ2kRRHIaftcHyZ+e17KhWLxY2eJDSI8FCwASNYG8l37856Tq9Yssvn9arrVZFdtu2a4zoZcWtexUOOUTKUYIlmr/je7cckjajQhGOlOo6d6GCKpWaE01mhmyqaYDLGQ9oxVOCIqmA6P3aGTozSR4NYmhIazdXvE1McKTWJQtMZYT1Sv71M/MvrpHpQD6ZMJKmmgiwWDVKOdIyyz1GfSUo0nxiCiWTmVkRGWGKiTT4FE8LXp+h/0nLLTqXsXnulxsUyjjwcwTGcggM1aMAVNMEHAgwe4AmeLWE9Wi/W66I1Zy1nDuEHrLdPHcKOPQ==</latexit>



① Statistical improvement 

② Clear γ-ray spectrum 

! β-γ spectroscopy is useful

!additional information on nuclear structure

: identified in the previous study 
: identified in the new results
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β-γ Decay Spectroscopy
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Production of RIB at RIKEN

(Target)
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(345MeV/u)

BigRIPS 
(A/Q, Z)



𝐴 /𝑄

𝑍
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(𝑍, 𝐴 − 1)

(𝑍 + 1,𝐴 + 3)

Nb 
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110Nb

Identification of the Fragments
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Detectors
Overview of the experimental area
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Direction of 
the beam

HPGe 
cluster

Stoppers for the 
in-flight ions  
! WAS3ABi

LaBr3 (Ce) 
array



β-γ Decay Spectroscopy at RIBF

EURICA

WAS3ABi

LaBr array:Upstream/downstream 
plastic scintillators
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Continuous 
ion beam



Ion Stopping at WAS3ABi

 - Five DSSSDs (Double-Sided Silicon Strip  
   Detectors) with 1-mm thickness 
 - 1-mm width x-strips and y-strips cover     
   6040 mm active area 

WAS3ABi 
(5 DSSD layers)

Plastic scintillator 
(Upstream)

Plastic scintillator 
(Downstream)

Beam 
direction

-ray
… …Front 

view
End 
view

x-strips (1mm)

y-strips (1mm)

17

DSSSD layers



Gamma Ray Detection with EURICA*

* Euroball-RIKEN Cluster Array

 - 84 Ge crystals (7 crystals  12  
   clusters), designed for ~4π    
   acceptance 
 - from Europe (GSI, Germany)
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 - 18 cerium-doped lanthanum tri-bromide crystals 
 - from United Kingdom  
 - Fast response

(Time resolution of the LaBr3 (Ce) array)

Time resolution @200 keV
: ~ 0.26 ns
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β-γ spectroscopy at RIBF

EURICA

γ1

WAS3ABi
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β-γ spectroscopy with LaBr Array

EURICA

1
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H. Watanabe et al., Phys. Lett. B 
704 270 (2011)
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Statistical improvement of ~102
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transitions 

New results 
- Observation of the 6+, 7+  states 

in the second band 

- Observation of the third band 
(𝛾𝛾-vibration?) 

!Kinematic moment of inertia

H. Watanabe et al., 
Phys. Lett. B 704 
270 (2011)

𝛽-decay to 110Mo
A partial level scheme of 110Mo
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110Nb
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Lifetime measurement of         
     states 

(The energy-time plot of 110Mo)

projection

background

213.4-keV:  

24T [ns]Energy [keV]

First measurement!

2+1
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* 106Mo (N = 64)
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25! First results using LaBr3 (Ce) detector! 
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* 108Mo (N = 66) * 110Mo (N = 68)

! First results using LaBr3 (Ce) detector! 

Evaluated 
value (2016)
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Rotor models for  A ~ 110 nuclei

Triaxiality in the second band 
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Level spacing in side band is different for each model 

𝑆(𝒥) ≡One useful indicator

Triaxiality in the second band 

𝐸(4) − 𝐸(3)

𝐸(3) − 𝐸(2)
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Axially symmetric 
rotor with γ-vibration 

γ-unstable rotor model Rigid triaxial rotor model
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Triaxiality in the second band 
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S(J) of neutron-rich Mo, Ru, and Pd isotopes
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Microscopic 5D Collective Hamiltonian Calculation 

Mean field theory is suitable to predict the shape (in body-fixed frame). 

Prediction of the observables   ! Go beyond

34
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Microscopic 5D Collective Hamiltonian Calculation 

Beyond mean field (BMF) theory can give information on the observables.

rotation vibration potential

5D-Collective 
Hamiltonian

Jk, Bββ, Bβγ, Bγγ, and V: determined through the beyond mean-field approach

35

Skyrme type interaction SLy4 and SLy5+T are used and compared.

N. Hinohara et al., PRC82(2010)064313, PRC84(2011)061302 
K. Sato et al., PRC86(2012)024316



Microscopic 5D Collective Hamiltonian Calculation 

Neutron number
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Microscopic 5D Collective Hamiltonian Calculation 

Experimental and theoretical energies 

of the low-lying excited states 
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Microscopic 5D Collective Hamiltonian Calculation 

-110Mo 

(1) Ground band: good agreement with the 

experimental results 

(2) Side (K = 2) band: γ-soft character  

! inconsistent with the experimental results

110Mo 38



Microscopic 5D Collective Hamiltonian Calculation 

Potential Energy Surface (PES)

SLy5+T

( β—γ plane)
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Microscopic 5D Collective Hamiltonian Calculation 

SLy4

SLy5+T
106,108Mo: prolate 
110Mo: γ-soft, close 

to γ-unstable
40



Summary
The shapes of 106,108,110Mo were studied via the β-γ spectroscopy  

(1) The lifetime measurement of the            states: the degree of deformation decreases 

with increasing neutron number.  

(2) The observation of 6+, 7+  states in 110Mo: the energy staggering indicator S(J) for newly 

observed levels suggests the axially symmetric shape.  

(3) Comparison with BMF calculation: the experimental B(E2) and energy of the low-lying 

states are consistent with SLy5+T, which indicates prolate ground-state shape.
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