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Shapes of Atomic Nuclel
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Shapes of Atomic Nuclel

Coordinate: ‘Hill-Wheeler’ coordinate

; oblate

Parametrization of
Quadrupole Deformation

triaxial
7/3 —

4

23/3

R = Ro(1 + aspmYom (0, ¢))

prolate 1
a0 = fcosy, az = EB sin 7y

P. Cgjnar et al.,, Rev. Mod.
Phys. 82, 2155 (2010)



Shapes of Atomic Nuclel

Possible shapes of deformed nuclei
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Prolate Oblate Triaxial

v =0° v = 60°

Degree of deformation: B, degree of asymmetry: vy



Shapes of Atomic Nuclel

Oblate *

Degree of deformation:

Degree of asymmetry: vy

Triaxial

R = Ro(1+ aomYom (0, ®))

|
a0 = fcosy, az = %5 sin 7y

(B
:é‘ /' :{
N7
hi\‘» :.0.“ <
L a
L i a



Shapes of Atomic Nuclel

Candidates of the triaxial ground-state shape
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Shapes of Atomic Nuclel

Nuclear chart around A = 110
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: : §§ Mo
More Information — Better Understanding il oo B
Possible signature of %—a 41+
the triaxial shape
Rotor models for A ~ 110 nuclei W0 e 214
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Evolution of 5 and £/(27)
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B-y Decay Spectroscopy

106,108,110Nb mmmm) : identified in the previous study
mms) : identified in the new results

7+
@ Higher excited states
6+
-gq_— energy spacing related to vy (11°Mo).
47+
@ Lifetime measurement of QEL state

'the deformation parameter 8 of ground

state (106,108,110|\/|0)_

106,108,110\Mo
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B-y Decay Spectroscopy

106,108,110Nb mmmm) : identified in the previous study
mms) : identified in the new results

@ Statistical improvement

@ Clear y-ray spectrum

= B~y spectroscopy is useful

106,108,110\Mo

- additional information on nuclear structure
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Production of RIB at RIKEN

BigRIPS

/ (AIQ, Z)
Fission
238() (345MeV/u) fragment
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Fission
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Fissile
nucleus

9Be
(Target)
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ldentification of the Fragments
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[sotope The number of implanted ions
R\ 7.1 x 104
105N 1.3 x 10°
HOND 1.9 x 106

14



Detectors

Overview of the experimental area

LaBr, (Ce)
array
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B-v Decay Spectroscopy at RIBF

Continuous
ion beam —

|:| :Upstream/downstream
plastic scintillators
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lon Stopping at WAS3ABI

y-strips (1mm)
Front : End
view : view

x-strips (1mn

Plastic scintillator '
(Downstream)
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- Five DSSSDs (Double -Sided Silicon Strip
Detectors) with 1-mm thickness

Plastic scintillator
(Upstream)

- 1-mm width x-strips and y-strips cover (?I?ea(rj?lor; """""""""""""""""

6040 mm active area 17
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Gamma Ray Detection with EURICA’

* Euroball-RIKEN Cluster Array

- 84 Ge crystals (7 crystals 12
clusters), designed for ~4mt

acceptance
- from Europe (GSI, Germany)
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LaBr3(Ce) Array - Gamma Ray Timing

- 18 cerium-doped lanthanum tri-bromide crystals
- from United Kingdom
- Fast response

(Time resolution of the LaBr; (Ce) array)
0.357

- Time resolution @200 keV ]
0.3f : ~0.26 ns .

0.15F o y-ray from Mo -

[ O y-ray from %Mo ]
0.1F 2 v-ray from Mo ]

100 200 300 400 500 600
E, [keV] 19
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B-v spectroscopy at RIBF

@ B-ray emission

Detected at t’
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B-v spectroscopy with LaBr Array

Detected at ¢ WAS3AB:

@ B-ray

emission

)
/
/

@ lon

implantation

:Upstream/downstream
plastic scintillators

.

[ X X P X X X X X X X X

® vy-ray
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%Detected at t/

LaBr array

(Example) distribution of time
difference t—t’

Slope - lifetime
of the excited state

Log scale
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Counts

Counts/0.5 keV

y-ray spectrum of 119Mo produced from f-decay
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p-decay to 1"0Mo

A partial level scheme of 110Mo

—~en ol

17807 ) 1y 2 1796.2 2298 (67 N eW reS u ItS

e - Observation of the 6+, 7+ states
In the second band

563.3
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1477.7

H. Watanabe et al,, g
Phys. Lett. B 704
270 (2011)

- Observation of the third band
(yy-vibration?)

- Kinematic moment of inertia

Red lines: new levels and
transitions 23
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Lifetime measurement of
2 states

Counts/0.3 ns

(The energy-time plot of 110Mo)
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Lifetime measurement of 27 states

* 106Mo (N = 64)
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- First results using LaBr; (Ce) detector!



Lifetime measurement of 2] states
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Quadrupole deformation of the ground state

0.45}

0.25F

0.5F

0.4}

Mo 1sotopes

o)

Neutron number

Previous
it New results
results — e Mo -
58 60 62 64 66 68

=
=

Excitation energy [MeV]

214 0415 1061 1081 10y

47 1 1
B = 40.81 x 1013 —
3ZR% \/7'(1 + «) kS

T : lifetime
(X : internal conversion coeff.

Ro: (fm)
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Triaxiality in the second band

Rotor models for A ~ 110 nuclei

Axially symmetric Rigid triaxial rotor model vy-unstable rotor model
rotor with y-vibration A gt g+
g+ ' 7t
—_ 77
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— 33
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£ band 4 3t EG) - BQ) 4
2
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an
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Level spacing in side band

Es(J) _[E(J)-E(J-1]-[E(J 1) - E(J —2)]
E(27) E(2))

S(j) =



Triaxiality in the second band
Energy staggering of y-band

S(7) = EQf) E(2()
Lse A I
1.0
0.5F ; :
:U:’T 0.0 — axially sym.
(1)(5) rigid triaxial
L5 — v -unstable
4 5 6 7 g



5(])

Triaxiality in the second band

S(]) of neutron-rich Mo, Ru, and Pd |sotopes

,,,,,,,,,,,,,,,,,,,,,,,,, st | | I
15E- Pd 1sot0pes (Z 46) — 2 /\ A
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M.A. Caprio, PRC83(2011)064309
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5(])

Triaxiality in the second band

S(]) of neutron-rich Mo, Ru, and Pd |sotopes
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5(])

Triaxiality in the Second Band

S(]) of neutron-rich Mo, Ru, and Pd isotopes
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Microscopic 5D Collective Hamiltonian Calculation

Mean field theory is suitable to predict the shape (in body-fixed frame).

Prediction of the observables - Go beyond

6+
\\\
‘1) level energies, wave
=7 function, B(E2), ...
ground
state Shape

(potential minimum) 34



Microscopic 5D Collective Hamiltonian Calculation

Beyond mean field (BMF) theory can give information on the observables.

3
5D-Collective _ 1 2 1 52 . 1 2.2
Hamiltonian H = 2 I;kak+2366<577)5 +Bﬁv(57’7)55’7+23w<57’7)5 Y +VI(B,7)
l ] | ] 0 J

rotation vibration potential

Jx, Bgs, Bgy, By, and V: determined through the beyond mean-field approach

Skyrme type interaction SLy4 and SLy5+T are used and compared.

N. Hinohara et al., PRC82(2010)064313, PRC84(2011)061302
K. Sato et al., PRC86(2012)024316
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Microscopic 5D Collective Hamiltonian Calculation
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Excitation Energy (MeV)
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Microscopic 5D Collective Hamiltonian Calculation
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Microscopic 5D Collective Hamiltonian Calculation

Excitation Energy (MeV)

2.5

2.0

1.0

0.5

0.0

1.5

110Mo

Exp.
== SLy5+T
= SLy4

-110Mo

(1) Ground band: good agreement with the

experimental results

(2) Side (K = 2) band: y-soft character

9

Inconsistent with the experimental results



Microscopic 5D Collective Hamiltonian Calculation

Potential Energy Surface (PES)

(f—y plane)
4.8
60
Oblate
Mo \_(deg) I4 ?
40 13.6
SLy5+T 2.4§ = Triaxial
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AV ) .
0.6
B
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Microscopic 5D Collective Hamiltonian Calculation

SLy4

60 4.8 4.8 4.8
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‘ 1.8~
_§¢ lor-unstable
0.5 0.0

3 g ’ 40



Summary

The shapes of 106.108.110Mo were studied via the p-y spectroscopy

(1) The lifetime measurement of the E(27) states: the degree of deformation decreases

with increasing neutron number.

(2) The observation of 6*, 7+ states in 1"0Mo: the energy staggering indicator S(J) for newly

observed levels suggests the axially symmetric shape.

(3) Comparison with BMF calculation: the experimental B(E2) and energy of the low-lying

states are consistent with SLy5+7, which indicates prolate ground-state shape.
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