CENuM-RULiC Workshop IBS, Daejeon, Korea / Oct. 31, 2019

Nuclear reactions with RI beams for X-ray burst

Kevin Insik Hahn (한인식, 韓仁植)

Ewha Womans University

Introduction

Experiments

- The ¹⁴O(a,p) ¹⁷F Experiment
- The ¹⁸F(p,a)¹⁵O Experiment
- SAMURAI experiments

Summary

Binary star system

- X-ray Bursts
- Classical Novae
- Super Novae

White dwarf

Accretion disk

Red Giant

The breakout from the HCNO to the rp-process

D. Kim Ph.D. Thesis (2018)

D. Kim, A. Kim, K. I. Hahn et al. (to be submitted to PRL or PRC)

The ¹⁴O(α,p)¹⁷F experiment at CNS

Excitation function of the ${}^{14}O(\alpha, \alpha){}^{14}O$ reaction at the 0 degrees telescope. The level marked by * has not been seen before.

M. Notai, S. Kubono, T. Teranishi *et al.* Nucl. Phys. A738, 411 (2004) I. S. Hahn, JKPS 45, 132 (2004) A. Kim, N. H. Lee, I. S. Hahn, J. S. Yoo *et al.*, JKPS 57, 40 (2010)

Direct measurement of the ${}^{14}\text{O}(\alpha,p){}^{17}\text{F}$ cross section

A. Kim, K. I. Hahn et al., Phys. Rev. C 92, 035801 (2015)

Table 1.1. List of γ -ray emission types for CO and ONe nova [7].

Nova type	Isotope	Mean lifetime	Main emission type
CO & ONe	^{13}N	$9.965 \min$	511 keV line & continuum
CO & ONe	18 F	$109.77 \min$	511 keV line & continuum
CO	$^{7}\mathrm{Be}$	77 days	478 keV line
ONe	22 Na	$2.6018 \ yr$	1275 keV line
ONe	^{26}Al	$10^6 { m yr}$	1809 keV line

¹⁸F nucleosynthesis in classical novae

 ${}^{12}C(p,\gamma){}^{13}N(\beta^{+}){}^{13}C(p,\gamma){}^{14}N(p,\gamma){}^{15}O(\beta^{+}){}^{15}N(p,\alpha){}^{12}C$ ${}^{12}C(p,\gamma){}^{13}N(p,\gamma){}^{14}O(\alpha,p){}^{17}F(p,\gamma){}^{18}Ne(\beta^{+}){}^{18}F(p,\alpha){}^{15}O(\beta^{+}){}^{15}N(p,\alpha){}^{12}C$

¹⁸F nucleosynthesis in classical novae

Motivation – ¹⁹Ne states near proton threshold

$E_x(^{19}{\rm F})$ (MeV)	$E_x(^{19}\text{Ne})$ (MeV)	$E_{\rm c.m.}$ (keV)	J^{π}	Γ_{γ} (eV)	Γ_p (keV)	Γ_{α} (keV)
6.497	6.419	8(6)	$\frac{3}{2}^{+}$	0.85(15)	$4.3(9) \times 10^{-37}$	0.5(5)
6.429	6.437	26(9)	$\frac{1}{2}$ -	[1(1)]	$(2.8^{+5.6}_{-1.9}) \times 10^{-20}$	216(19)
6.528	6.449	38(7)	$\frac{3}{2}$ +	1.2(2)	$6.6(6.6) \times 10^{-15}$	4.3(3.7)
6.838	6.698	287(6)	$\frac{5}{2}$ +	0.33(6)	$2.5(2.5) \times 10^{-5}$	1.2(1.0)
6.787	6.741	330(6)	$\frac{3}{2}$ -	5.50(76)	$2.22(69) \times 10^{-3}$	2.7(2.3)
6.927	6.861	450(6)	$\frac{7}{2}$ -	2.40(35)	$1.6(1.6) \times 10^{-5}$	3.1(2.7)
7.30	7.076	664.7(1.6)	$\frac{3}{2}$ +	[1(1)]	15.2(1.0)	23.8(1.2)
7.262	7.238	827(6)	$\frac{3}{2}$ +	[1(1)]	0.35(35)	6.0(5.2)
7.364	7.253	842(10)	$\frac{1}{2}$ +	[1(1)]	0.9(9)	23(20)
7.560	7.420	1009(14)	$\frac{7}{2}$ +	[1(1)]	27(4)	71(11)
7.540	7.500	1089(9)	$\frac{5}{2}$ +	5.8(0.9)	1.25(1.25)	0.24(24)
7.590	7.533	1122(11)	$\frac{5}{2}$ -	[1(1)]	10(6)	21(11)

D. Bardayan et al., PRC 70, 015804 (2004)

K. Y. Chae et al., PRC 74, 012801(R) (2006)

- \Rightarrow Several resonances near the proton threshold (E_x = 6.411 MeV) mainly affect the ¹⁸F(p,α)¹⁵O reaction rate in T₉ = 0.04 ~ 0.4. These states already were studied but we would like to improve resonance parameters because of its importance.
- However, the 3/2+ subthreshold states and near the proton threshold states were interference each other, and it changes the reaction rate between T₉ = 0.04 ~ 0.4.

Obtain precise alpha width via alpha elastic scattering experiment!

Motivation – alpha cluster

R. Otani et al., PRC 90, 034316 (2014)

 Theoretical calculation result on the excitation energies of the cluster structure states in ¹⁹Ne. D. Torresi et al., PRC 96, 044317 (2017)

* ${}^{15}\text{O}+\alpha$ excitation function fitting result. ($\theta_{\text{c.m.}} = 18$ O°). The ${}^{15}\text{O}+\alpha$ elastic scattering was already pe rformed in 2017 but our energy range is more w iden compared with previous result.

Find alpha cluster states!

¹⁵O+α experiment for ¹⁹Ne

CRIB facility

Experimental set-up

Thickness of the target (Effective thickness)

Two experiments were conducted.

- ¹⁵O+α elastic scattering
- ¹⁵N+α elastic scattering

Purpose: Study of the ¹⁹F nuclei (Mirror nuclei of ¹⁹Ne), for missing states of ¹⁹Ne energy calibration of the ¹⁵O+ α experiment

- Thick Target Inverse Kinematics (TTIK)
- Two ΔE-E telescopes were installed for the particle identification.
 - Type: Silicon detector
 - Thickness: ΔE ~20 μm, E ~480 μm

Excitation function for ¹⁹Ne and ¹⁹F

Results – ¹⁹F

- R-matrix fitting result (lower-lying states)

The low-lying states in ¹⁹Ne are located in the astrophysically important energy range.

Previous study					This wo	ork		
$\mathrm{E}_x \; (\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\alpha} \; (\text{keV})$	Γ (keV)	\mathbf{J}^{π}	Ref.	$E_{c.m.}$ (MeV)	E_x (MeV)	$\Gamma_{\alpha} \ ({\rm keV})$	l J $^{\pi}$
6.536 ± 5^a	245 ± 6	-	$\frac{1}{2}^{-}$	[19,23,25]				
6.838 ± 0.9^b	1.2	-	$\frac{5}{2}^{+}$	[19, 23]	2.82	6.83	2.4 ± 0.6	$3 \frac{5}{2}^+$
6.989 ± 3^b	96 ± 6	-	$\frac{1}{2}^{-}$	[19, 23]	2.98	6.99	100 ± 32	$0 \frac{1}{2}^{-}$
7.114 ± 6^b	~ 30	-	$\frac{3}{2}^{+}$	[19, 21]	3.10	7.11*	32 ± 6	$3(\frac{5}{2}^+)$
	25 ± 4	-	$\frac{5}{2}^{+}$	[23]			23 ± 4	$3\left(\frac{7}{2}^{+}\right)$
	32	-	$\frac{7}{2}^{+}$	[15, 19]				
7.353^a	65	-	$\frac{7}{2}^{+}$	[19, 23]	3.32	7.33	69 ± 10	$3(\frac{5}{2}^+)$
							39 ± 8	$3\left(\frac{7}{2}^{+}\right)$
7.56 ± 10^{b}	-	< 90	$\frac{7}{2}^{+}$	[19]	3.53	7.56^{*}	78 ± 7	$3 \frac{7}{2}^+$
7.587	$\Gamma_{lab} < 50$	-	$(\frac{5}{2}^{-})$	[29]	3.58	7.59	49 ± 13	$2 \frac{5}{2}^{-}$
7.702 ± 5	-	< 30	$\frac{1}{2}^{-}$	[29]	3.68	7.69	59 ± 25	$2(\frac{3}{2}^{-})$
7.88^{c}	-	< 260	-	[19]				

TABLE I: Resonance parameters of the levels in $^{19}\mathrm{F}$ with $\mathrm{E}_x=6.5-7.9$ MeV.

^afrom Ref. [23]

^bfrom Ref. [29]

 $^c{\rm from}$ Ref. [19]

* used for the calibration

Spin and parity (limitation of R-matrix analysis) & Doublet or triplet (Energy resolution: ~ 40keV)

Angle = 174.5°

Angle = 164.5°

E _x (MeV)	Γ _α (keV)	Jπ	Γ _w (keV)
6.291	71	5/2-	0.0742
6.422	133	3/2+	0.2398
6.437	29	1/2-	0.3708
6.901	137	3/2-	0.2490
7.054	81	7/2+	0.1033
7.076	65	3/2+	0.6259
7.255	234	5/2+	0.1454
7.305	98	7/2+	0.1573
7.531	54	5/2-	0.5626

E _x (MeV)	Γ _α (keV)	Jπ	Γ _w (keV)
7.856	471	5/2-	0.7643
8.115	32	11/2+	0.0254
8.430	47	9/2-	0.1935
8.765	243	5/2-	1.3870
8.785	129	5/2+	0.7686
9.200	1039	7/2+	1.0084
9.400	968	5/2-	1.8332
9.620	23	11/2-	0.0349
9.870	175	11/2+	0.2227

E _x (MeV)	Γ _α (keV)	Jπ	Г _w (keV)
10.240	555	7/2-	0.8643
10.260	67	13/2-	0.0723
10.425	227	5/2-	2.5108
11.505	156	9/2-	1.5346
11.010	1354	7/2-	1.2632
11.030	226	7/2+	2.1434
11.340	151	11/2-	0.1933
11.370	66	7/2+	2.3481

Dimensionless reduced width

$$\theta^2 = \frac{\Gamma_\alpha}{\Gamma_w}$$

 We obtained resonance parameters over 26 states in ¹⁹Ne and calculated dimensionless reduced width which indicates the state is alpha-cluster state.

Summary of the ¹⁵O+alpha experiment

- Experimental data for ¹⁹F, which is the mirror nuclei of ¹⁹Ne, were also taken for the analysis of ¹⁹Ne data.
- More than 26 peaks in ¹⁹Ne were shown in silicon telescopes with an energy resolution of $E_{c.m.} = 40$ keV.
- The ${}^{18}F(p,\alpha){}^{15}O$ reaction rate was calculated using our data, and we found newly observed states affect the reaction rate.
- The alpha-cluster structure evidence was shown in our experimental data between 7.5 MeV < E_x < 8.5 MeV, and the result is consistent with the theoretical calculation.

Collaborators

D. KIM, G. W. KIM and S. Y. PARK Department of Physics, Ewha Womans University, Seoul 03760, Korea

A. KIM and K. I. HAHN^{*}

Department of Science Education, Ewha Womans University, Seoul 03760, Korea

K. ABE, O. BELIUSKINA, S. HAYAKAWA, N. IMAI, N. KITAMURA, Y. SAKAGUCHI and H. YAMAGUCHI Center for Nuclear Study, University of Tokyo, Wako, Japan

> S. M. CHA, K. Y. CHAE, M. S. KWAG, S. W. HONG, E. J. LEE and J. H. LEE Department of Physics, Sungkyunkwan, Suwon 16419, Korea

> > E. K. LEE

Center for Underground Physics, Institute of Basic Science, Daejeon 34126, Korea

J. Y. MOON Rare Isotope Science Project, Institute of Basic Science, Daejeon 34126, Korea

S. H. BAE and S. H. CHOI Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

> S. KUBONO, V. PANIN and Y. WAKABAYASHI RIKEN, Nishina Center, Wako, Japan

> > N. IWASA

Department of Physics, University of Tohoku, Sendai, Japan

D. KAHL

School of Physics and Astronomy, University of Edinburgh, United Kingdom

A. A. CHEN

Department of Physics and Astronomy, McMaster University, Hamilton, Canada

Impact on X-ray burst by nuclear astrophysics experiments

SAMURAI experiment

Different reactions using SAMURAI at RIBF/RIKEN

Heavy-ion-Proton (HiP) experiments were performed for investigating rpprocess near Waiting Point(WP) in proton drip-line

[Subject]:

Investigation of proton-unbound state in neutron-deficient isotopes ⁶⁶Se and ⁵⁸Zn

⁶⁵As(p,γ)⁶⁶Se is the most influential reaction rate in several X-ray burst models

[Subject]:

Investigation of proton-unbound state in neutron-deficient isotopes ⁶⁶Se and ⁵⁸Zn

rp-process : β⁺ decay (~1s) and proton capture (Take 100s) Phys. Rev. C 78, 012810 (2008)

Hodoscope detector

HODP

HODS

PMT (Photo Multiplier Tube)

Plastic Scintillator

Summary of the talk

- The ^{14,15}O+alpha experiments were performed using CRIB at CNS/RIKEN.
- The ⁶⁵As(p,g)⁶⁶Se experiment was done using SAMURAI at RIKEN

Korea is building the RI beam accelerator called RAON. Integration of ISOL and IF will allow us to investigate structure studies of extremely neutron-rich nuclei and nuclear astrophysics experiments.

Thank you for your attention!